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� We model  the  inhomogeneous  dis-
tribution  of  polymer  segments  by  a
soft  step  function.

� We  derive  an  approximate  analytic
expression  for  the  electrophoretic
mobility  of a soft  particle.

� The mobility  of  a soft  particle
decreases  by the  inhomogeneous
segment  distribution.
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a  b  s  t  r  a  c  t

A  simple  approximate  analytic  expression  is derived  for  the electrophoretic  mobility  of a soft  particle  con-
sisting  of  the  hard particle  core  covered  with  an  ion-penetrable  surface  layer  of  polyelectrolytes.  The effect
of  the  inhomogeneous  distribution  of  the  polymer  segments  is  taken  into  account  by  modeling  the  sur-
face  layer  as a soft  step  function  with  the  inhomogeneous  distribution  width  ı.  The  mobility  expression,
which  is  derived  on  the  basis  of  the  non-linear  Poisson–Boltzmann  equation,  improves  an  approximate
mobility  expression  previously  derived  by  using  the  linearized  Poisson–Boltzmann  equation.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The electrophoretic mobility of polyelectrolyte-coated parti-
cles, which we term soft particles, has been studied theoretically
by a number of researchers [1–28]. These studies are based on
the Debye–Bueche model [29] in which the polymer segments
are regarded as resistance centers distributed uniformly in the
polyelectrolyte layer, exerting frictional forces on the liquid flowing
in the polyelectrolyte layer.
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The polyelectrolyte layer is usually modeled as a hard step
function, that is, the surface charge layer assumed to have a def-
inite thickness with a uniform segment density distribution. The
hard step function model is an idealized model. A more realistic
model is the one that takes into account the effect of the inho-
mogeneous distribution of polymer segments. Indeed, there are
some cases in which this effect becomes important. Varoqui [30]
and Ohshima [31] considered the case where neutral polymers are
adsorbed with an exponential segment density distribution. Duval
and Ohshima [32] have presented an electrokinetic theory of diffuse
soft particles by modeling the polyelectrolyte layer as a sigmoidal
function.

Recently, as a different model we have proposed a soft step func-
tion model [33]. This theory, however, is based on the linearized
Poisson–Boltzmann equation and thus is applicable only for the low
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Fig. 1. Schematic representation of the surface of a plate-like particle covered by
an  ion-penetrable surface layer of polyelectrolytes (upper) and the segment den-
sity distribution modeled as a soft step function with the inhomogeneous segment
distribution width ı (lower).

potential case. In the present paper we will improve the previous
result by using the non-linear Poisson–Boltzmann equation.

2. Potential distribution

Consider a soft particle immersed in a symmetrical electrolyte
solution of valence z and bulk concentration (number density) n.
The particle consists of an uncharged core covered with an ion-
penetrable surface layer of polyelectrolytes of thickness D. We  treat
the case where the particle size is much larger than the Debye
length 1/� so that the particle surface can be assumed to be planar.
Here � is the Debye–Hückel parameter, defined by

� =
(

2z2e2n

εrεokT

)1/2

(1)

where e is the elementary electric charge, εr is the relative permit-
tivity of the electrolyte solution, εo is the permittivity of a vacuum,
k is Boltzmann’s constant, and T is the absolute temperature.

We  take an x-axis perpendicular to the particle surface with its
origin 0 at the front edge of the surface charge layer so that the
region x > 0 corresponds to the solution phase (Fig. 1). We  assume
that the polymer segment distribution can be modeled as a soft step
function so that its distribution function f(x) is given by

f (x) = 1 − exp
(
x

ı

)
, − D < x < 0 (2)

Here ı, which is assumed to satisfy ı « D, is a measure of the width
of the inhomogeneous distribution of polyelectrolyte segments

near the front edge of the polyelectrolyte layer. Eq. (2) implies that
D corresponds to the maximum segment length.

We assume that ionized groups of valence Z are distributed in
the polyelectrolyte layer and their density N(x), which is a function
of x, is proportional to the distribution function f(x). We  also assume
that D is much thicker than ı (ı « D) so that the density N(x) can be
assumed to have a constant value N in the deep inside the surface
layer. We  may  thus write

N(x) = Nf (x) = N
{

1 − exp
(
x

ı

)}
, − D < x < 0 (3)

The surface charge density �fix(x) is thus given by

�fix(x) = ZeN(x) = ZeNf (x) = ZeN
{

1 − exp
(
x

ı

)}
, − D < x < 0

(4)

We  assume that the electric potential  (x) at position x satisfy
the following nonlinear Poisson–Boltzmann equations:

d2 

dx2
= −�el(x) + �fix(x)

εrεo
, − D < x < 0 (5)

d2 

dx2
= −�el(x)

εrεo
, x > 0 (6)

with

�el(x) = ZeN(e−y − ey) (7)

where

y(x) ≡ ze (x)
kT

(8)

is the scaled electric potential. Eq. (5) implies that the relative
permittivity εr takes the same value both inside and outside the
surface charge layer.

By using Eqs. (4), (7) and (8), the Poisson–Boltzmann Eqs. (5)
and (6) become

d2y

dx2
= �2{sinh y − sinh yDON(1 − ex/ı)}, − D < x < 0 (9)

d2y

dx2
= �2 sinh y, x > 0 (10)

with

yDON ≡ zeyDON

kT
= arcsinh

(
ZN

2zn

)
= ln

[
ZN

2zn
+

√(
ZN

2zn

)2
+ 1

]
(11)

where  DON is the Donnan potential and yDON is the scaled Donnan
potential. As a good approximation, we put y = yDON + �y  in Eq. (9)
and linearize Eq. (9) with respect to �y, giving

d2�y

dx2
= �2

m�y  + �2
m tanh yDONe

x/ı (12)

with

�m = �
√

cosh yDON = �

[
1 +

(
ZN

2zn

)2
]1/4

(13)

where �m can be interpreted as the Debye–Hückel parameter inside
the surface layer. The boundary conditions are

dy

dx

∣∣∣
x=−D

= 0 (14)

dy

dx

∣∣∣
x=0−

= dy

dx

∣∣∣
x=0+

(15)
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