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» We model the inhomogeneous dis-

tribution of polymer segments by a
soft step function.

» We derive an approximate analytic
expression for the electrophoretic
mobility of a soft particle.
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Asimple approximate analytic expression is derived for the electrophoretic mobility of a soft particle con-
sisting of the hard particle core covered with an ion-penetrable surface layer of polyelectrolytes. The effect
of the inhomogeneous distribution of the polymer segments is taken into account by modeling the sur-
face layer as a soft step function with the inhomogeneous distribution width §. The mobility expression,
which is derived on the basis of the non-linear Poisson-Boltzmann equation, improves an approximate

mobility expression previously derived by using the linearized Poisson-Boltzmann equation.
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1. Introduction

The electrophoretic mobility of polyelectrolyte-coated parti-
cles, which we term soft particles, has been studied theoretically
by a number of researchers [1-28]. These studies are based on
the Debye-Bueche model [29] in which the polymer segments
are regarded as resistance centers distributed uniformly in the
polyelectrolyte layer, exerting frictional forces on the liquid flowing
in the polyelectrolyte layer.
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The polyelectrolyte layer is usually modeled as a hard step
function, that is, the surface charge layer assumed to have a def-
inite thickness with a uniform segment density distribution. The
hard step function model is an idealized model. A more realistic
model is the one that takes into account the effect of the inho-
mogeneous distribution of polymer segments. Indeed, there are
some cases in which this effect becomes important. Varoqui [30]
and Ohshima [31] considered the case where neutral polymers are
adsorbed with an exponential segment density distribution. Duval
and Ohshima [32] have presented an electrokinetic theory of diffuse
soft particles by modeling the polyelectrolyte layer as a sigmoidal
function.

Recently, as a different model we have proposed a soft step func-
tion model [33]. This theory, however, is based on the linearized
Poisson-Boltzmann equation and thus is applicable only for the low
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Fig. 1. Schematic representation of the surface of a plate-like particle covered by
an ion-penetrable surface layer of polyelectrolytes (upper) and the segment den-
sity distribution modeled as a soft step function with the inhomogeneous segment
distribution width § (lower).

potential case. In the present paper we will improve the previous
result by using the non-linear Poisson-Boltzmann equation.

2. Potential distribution

Consider a soft particle immersed in a symmetrical electrolyte
solution of valence z and bulk concentration (number density) n.
The particle consists of an uncharged core covered with an ion-
penetrable surface layer of polyelectrolytes of thickness D. We treat
the case where the particle size is much larger than the Debye
length 1/« so that the particle surface can be assumed to be planar.
Here k is the Debye-Hiickel parameter, defined by

222e2n\ '/
= <z~:rsokT> (1)
where e is the elementary electric charge, &; is the relative permit-
tivity of the electrolyte solution, &, is the permittivity of a vacuum,
k is Boltzmann'’s constant, and T is the absolute temperature.

We take an x-axis perpendicular to the particle surface with its
origin O at the front edge of the surface charge layer so that the
region x>0 corresponds to the solution phase (Fig. 1). We assume
that the polymer segment distribution can be modeled as a soft step
function so that its distribution function f(x) is given by

f(x):lfexp<%), -D<x<0 (2)

Here §, which is assumed to satisfy é « D, is a measure of the width
of the inhomogeneous distribution of polyelectrolyte segments

near the front edge of the polyelectrolyte layer. Eq. (2) implies that
D corresponds to the maximum segment length.

We assume that ionized groups of valence Z are distributed in
the polyelectrolyte layer and their density N(x), which is a function
of x, is proportional to the distribution function f{x). We also assume
that D is much thicker than § (§ « D) so that the density N(x) can be
assumed to have a constant value N in the deep inside the surface
layer. We may thus write

N(X)=Nf(x)=N{1—exp(§>}, ~D<x<0 3)

The surface charge density pqx(x) is thus given by
Prix(x) = ZeN(x) = ZeNf(x) = ZeN {1 — exp (%) } , —-D<x<0
(4)

We assume that the electric potential /(x) at position x satisfy
the following nonlinear Poisson-Boltzmann equations:

Ay palX)+ pax(x)

e e -D<x<0 (5)
d*y Pei(X)
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with
pei(x) = ZeN(e™ —¢”) (7)
where
_ zey(x)
YX) = =7 (8)

is the scaled electric potential. Eq. (5) implies that the relative
permittivity ¢, takes the same value both inside and outside the
surface charge layer.

By using Egs. (4), (7) and (8), the Poisson-Boltzmann Egs. (5)
and (6) become

2
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where {rpoy is the Donnan potential and ypoy is the scaled Donnan
potential. As a good approximation, we put y=ypon + Ay in Eq. (9)
and linearize Eq. (9) with respect to Ay, giving

d2Ay

dx2 = k4 Ay + k% tanhypone/® (12)
with
N2
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where k; can be interpreted as the Debye-Hiickel parameter inside
the surface layer. The boundary conditions are

dy

@b =0 (14)
dy _dy
a x=0— h a x=0t (15)
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