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h  i  g  h  l  i g  h  t  s

� We  include  ion-size  correlation
together  with  ion-colloid  dis-
persion  interaction  effects  into
Poisson–Boltzmann  equation.

� A  formulation  using  differential-
algebraic  equations  allows  a  fast  and
stable numerical  solution  of this  non-
linear  problem.

� We show here  that  ion-size  correla-
tion  is  very  important  for  bigger  and
more polarizable  counterions.

� In  several  examples,  we  also  show
the  importance  of  ion-size  asym-
metries  in  adequately  modeling  col-
loidal  systems.
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a  b  s  t  r  a  c  t

We  present  calculations  of  double  layer  interaction  between  charged  plates  taking  into  account  size
effects  on  colloidal  systems.  Those  are  modeled  using  a modified  version  of  Poisson–Boltzmann  equa-
tion,  including  non-electrostatic  interactions  due  to the  size  and  the  polarizability  of  each  ion.  The van
der  Waals  interactions  and  size  effects  can  properly  describe  ion  specificity  as observed  experimentally  in
many  colloidal  systems.  The  differential-algebraic  mathematical  structure  is used  to  solve  the  modified
Poisson–Boltzmann  equation.  The  DASSL  code  is  recursively  applied  using  a  Newton–Raphson  method
to  solve  the  corresponding  boundary-value  problem.  Density  profiles  around  colloidal  particles  are  cal-
culated  for  different  charged-particles  immersed  in various  electrolytes  aqueous  solutions.  From  these
profiles, we  could  calculate  the  pressure  (interaction)  between  the plates.  The  influence  of  charge  and
size asymmetries  of ions  on density  profiles  are  studied  in different  solutions.  Results  show  the  adequacy
of  this  modified  form  of  the  Poisson–Boltzmann  equation  and  the  proposed  mathematic  procedure  to
solve  the  needed  equations,  describing  several  properties  of  colloidal  systems  and  ion  size  correlation.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The electrical double layer (EDL) interaction between charged
surfaces immersed in electrolyte solutions is an important aspect
on colloid and interface science. The use of Gouy [1] and Chapman
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[2] theory to define the ion distribution on double layer leads to
the classical Poisson–Boltzmann equation (PBE). On this classical
approach, the ions are pointlike charges in thermodynamic equilib-
rium without statistical fluctuations and immersed in a continuum
medium with specified dielectric constant.

Although widely used to describe electrolyte solutions, the clas-
sical PBE has several limitations. After a rigorous analysis based on
Statistical Mechanics, Kirkwood [3] stated that this limitations are
associated with the neglect of an exclusion volume term and an
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electrostatic fluctuation term [4].  Despite the relative success on
prediction of ion distribution in the vicinity of flat and spherical
surfaces, the classical approach tends to overestimate the ion con-
centration around a charged surface, particularly for high surface
charges and multivalent electrolytes. This effect is mainly caused
by the absence of excluded-volume correlations [5–7].

Since Stern [8],  aware of the limitations of Gouy–Chapman (GC)
theory, stated that there should also be a compact ionic layer
adsorbed near the surface, several attempts have been proposed
to include volume effects in EDL theory. One of the first proposals
in accounting excluded volume effects in PBE was via a lattice based
approach, commonly referred as Langmuir type corrections [9,10].
Later works has extended and improved this approach, developing
modified versions of PBE for engineering applications [5,11–13].
An alternative way to treat this problem is using equations of state
(EoS) based on liquid-state theory for hard sphere mixtures. The
use of Boublik–Mansoori–Carnahan–Starling–Leland (BMCSL) EoS
[14,15] on GC theory allows the inclusion of size correlation terms
as excess chemical potentials, which takes into account the size
asymmetries of each ion in EDL calculations [16–19].  As the excess
chemical potentials is a continum function valid for the hole EDL, it
is not necessary to limit an excluded volume layer (a Stern layer),
and the size effect appears naturally.

In this paper we present pressure and ion density profiles cal-
culations between a pair of charged parallel plates, in which we
follow Lue’s approach [16] to take into account the ion size corre-
lations by using the BMCSL EoS. In addition to the size effects, we
also include dispersion potentials that act between ions and sur-
faces [20–22],  which originates by the fact that ions have different
polarizabilities than surrounding water. With these two modifica-
tions, an improved modified Poisson–Boltzmann equation (mPBE)
is used. Because the size correlation contribution is a collective
effect, the resulting mPBE constitutes a differential-algebraic equa-
tion, whose numerical solution can be directly obtained from the
well-established computer code DASSL [23].

This paper is organized as follows. In Section 2 we present the
methodology employed in modeling charged parallel plates via the
proposed mPBE, the numerical procedure to solve the resulting
differential-algebraic problem and how we calculate the pressure
between the two plates. In Section 3 we present the main numer-
ical results obtained. Then we show some conclusions in Section
4.

2. Methodology

2.1. Modeling of charged parallel plates

As the colloidal macroparticles typically have sizes much larger
than the ions, in general, when the macroparticles local radius of
curvature is large compared to the double layer thickness, it is
reasonable to assume that the ions “see” the surface like a plane
(flat) charged surface [24,25]. Thus, we estimate the interaction
between two colloidal particles as if two equally charged parallel
plates immersed in an electrolyte aqueous solution and separated
by a distance L. We  assume that the two plates have the same uni-
formly distributed charge densities (�). The solvent is a continuum
medium with dielectric constant (ε) equal to 78.5 (dielectric con-
stant of water solvent). The opposite charge ions  ̨ and  ̌ are treated
as hard spheres with diameters �˛ and �ˇ. Fig. 1 presents a cartoon
of the system.

Because the ions are treated as hard spheres, they cannot
penetrate into the colloid surface, so there is a cutoff distance
corresponding to smaller ion radius (xcutoff = �˛/2) for the case in
where �˛ < �ˇ. For �˛ /= �ˇ, there are regions where only the
smaller ion can be present. These regions are limited by the vertical

Fig. 1. Modeling of parallel plates with charge density � , separated by a distance L
and immersed in a dielectric medium (ε) composed by ions  ̨ and  ̌ with opposite
charges and radius r˛ = �˛/2 and rˇ = �ˇ/2. In the region limited by the vertical dotted
lines (r˛ ≤ x ≤ rˇ or L − rˇ ≤ x ≤ L − r˛), c˛ /= 0 and cˇ = 0.

dotted lines in Fig. 1 and corresponds to the ranges �˛/2 ≤ x ≤ �ˇ/2
and L −�ˇ/2 ≤ x ≤ L − �˛/2, where the concentration of the larger
ion vanishes (cˇ = 0), and the system consist only of the smaller
ion (c˛ /= 0). This represents a discontinuity in numerical solution
obtained, as we discuss in Section 2.3.

2.2. Modified Poisson–Boltzmann equation (mPBE)

Here we present a modified PB equation that accounts for both
the size and polarizability of each ion. The attractive contribution
from ion-colloid dispersion potential enhances the ion size effect.
Because the main purpose of this paper is to analyze the effects of
ion size correlation and asymmetries, we  neglect other important
interactions, such as electrostatic correlations [26–28],  polariza-
tion free energy and hydrophobic cavitational energy [28,29], ion
hydration forces [30,31], and image effects [32].

Despite these approximations, we use in our calculations ion
sizes that are recently estimated by Ninham’s group [33,34],  based
on ion hydration calculations for chaotropic and cosmotropic ions
(as shown in Section 3). Therefore, although ion hydration poten-
tials are neglected and water is structureless, hydration effects are
indirectly included in our model when we use ion sizes that are
consistent with them.

The modified Poisson–Boltzmann equation (mPBE) for two
equally charged parallel plates is, in cartesian coordinates:
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where e is the elementary charge, ε is the dielectric constant of
the solvent, ε0 is the vacuum permittivity, y is the dimensionless
electrical potential (y = e /kBT), kB is the Boltzmann constant, T is
the system temperature, and xmin = xcutoff is the cutoff distance.

The expressions in Eq. (2) represent the two boundary condi-
tions. The first one is derived from Gauss law and is used when
the charge surface density is specified. The second one is obtained
from the symmetry due to equally charged plates. The expres-
sion of the density profile ci(x) is derived from the invariance of
chemical potential of each ion along the electric double layer, taking
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