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We investigated whether raising HDL-cholesterol levels with cholesteryl ester transfer protein (CETP)
inhibition improves glucose homeostasis in dyslipidemic and insulin resistant hamsters. Compared with
vehicle, torcetrapib 30 mg/kg/day (TOR) administered for 10 days significantly increased by ~40% both
HDL-cholesterol levels and >H-tracer appearance in HDL after *H-cholesterol labeled macrophages i.p.
injection.

TOR significantly reduced fasting plasma triglycerides, glycerol and free fatty acids levels by 65%, 31%
and 23%, respectively. TOR also reduced blood glucose levels and plasma insulin by 20% and 49%
respectively, which led to a 60% reduction in HOMA-IR index (all p < 0.01). After >H-2-deoxyglucose and
insulin injection, TOR significantly increased glucose uptake in oxidative soleus muscle, liver and heart
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should be investigated.

by 26, 33 and 70%, respectively.
Raising HDL levels with the CETP inhibitor torcetrapib improves glucose homeostasis in dyslipidemic
and insulin resistant hamsters. Whether similar effect would be observed with other CETP inhibitors
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1. Introduction

Diabetic dyslipidemia is characterized by hypertriglyceridemia
and low high density lipoprotein (HDL) cholesterol levels, which
are known to be inversely correlated with cardiovascular risk [1].
Cholesteryl ester transfer protein (CETP) inhibition represents a
novel therapeutic strategy to raise HDL-cholesterol levels and
further reduces the risk of cardiovascular disease [2]. The benefit of
HDL is thought to be related to its key role in reverse cholesterol
transport (RCT), a process promoting the return of cholesterol from
macrophage in the arterial wall to the liver for further biliary and
fecal excretion [3]. Recent preclinical and clinical studies indicate
that HDL may also affect glucose homeostasis through insulin
secretion, AMP-activated protein kinase (AMPK) dependent
glucose uptake in muscle and improvement of whole body insulin
sensitivity [4,5]. Importantly, a post-hoc analysis of the ILLUMI-
NATE trial, suggested that raising HDL-cholesterol levels with the
CETP inhibitor torcetrapib improves glycemic control in type 2
diabetic patients [6]. We therefore tested the hypothesis that
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raising HDL with the CETP inhibitor torcetrapib would alter both
RCT and glucose homeostasis in dyslipidemic insulin resistant
hamsters [7]. This rodent model was selected as it does express
CETP (unlike mouse or rat) and more closely reflects human lipo-
protein metabolism [3].

2. Methods

Male Golden Syrian hamsters (91—100 g, 6 week-old, Elevage
Janvier, Le Genest Saint Isle, France) were fed ad libitum over 4
weeks with a high fat/high cholesterol diet (HFHC, 0.5% cholesterol,
0.25% deoxycholate, 11.5% coconut oil, 11.5% corn oil) with 10%
fructose in the drinking water, as described [7]. A total of 42
hamsters were used to perform the 3 in vivo experiments described
below (macrophage-to-feces RCT, HDL-cholesteryl esters kinetics
and insulin-stimulated glucose uptake). After 2 weeks of diet, the
42 hamsters were randomized according to their HDL-cholesterol
and total cholesterol levels and were then treated orally over 10
days with vehicle (n = 21) or torcetrapib 30 mg/kg (n = 21) once
daily.

After 10 days of treatment, hamsters were fasted overnight and
blood was collected by retro-orbital bleeding to perform Fast Pro-
tein Liquid Chromatography (FPLC) and biochemical analysis, as
described [7]. Plasma HDL particles were separated by precipitation
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of apolipoprotein B containing lipoprotein with phosphotungstate/
MgCl,. For each treatment group, a pool of plasma HDL (1 pool per
group) was extensively dialyzed in saline. Protein concentration
was then assayed with a commercial kit prior incubation with so-
leus muscle ex vivo, as described below.

After a 1-day recovery period, a first set of 14 hamsters was
injected with 3H-cholesterol labeled/oxidized LDL loaded macro-
phages (n = 7 per group) to measure macrophage-to-feces RCT, and
a second set of 14 hamsters was injected with 3H-cholesteryl oleate
labeled HDL (n = 7 per group) to measure HDL-cholesteryl esters
kinetics, as described [7,8].

To evaluate insulin-stimulated glucose uptake in vivo, a third set
of 14 overnight fasted hamsters (n = 7 per group) was injected
intravenously (jugular vein) under isoflurane anesthesia with
10 pCi of 3H-2-deoxyglucose (*H-2-DOG) and insulin (0.4U/kg) in
fatty acids free-bovine serum albumin 0.1%. At time 30 min after
3H-tracer injection, subcutaneous (inguinal) and visceral (epidid-
ymal) white adipose tissues, vastus lateralis (oxidative/glycolytic),
extensor digitorum longus (glycolytic) and soleus (oxidative)
muscles, liver and heart were collected and weighed prior to tissue
homogenization to measure *H-radioactivity.

To test whether HDL particles stimulate AMPK activation in
skeletal muscle, soleus muscles were dissected from 12 hamsters
made dyslipidemic insulin resistant after 2 weeks of HFHC diet.
After dissection, soleus muscles were incubated at 37 °C, 95% 0,:5%
COy, in 1 mL Krebs—Ringer bicarbonate buffer (pH 7.3, 1% bovine
serum albumin, 2 mM sodium pyruvate) for 30 min then kept in the
same buffer, without (basal) or with HDL from hamsters treated for
10 days with vehicle or torcetrapib (800 pug protein/mL buffer), or
the AMPK activator 5-aminoimidazole-4-carboxamide riboside
(AICAR; positive control) at 2 mM, for an additional 60 min (n = 6
per condition). Muscles were then washed in PBS 1x and flash
frozen prior to western blotting to evaluate phosphorylated-AMPK
(antibody from Cell Signaling, ref#2535S) and AMPK (Cell
Signaling, ref#2532S) expression by densitometry analysis (Image ]
software).

Data are expressed as mean 4 SEM. Unpaired Student t-test or 1-
way ANOVA + Dunnett post-test was used for statistical analysis. A
p < 0.05 was considered significant.

3. Results

Compared with vehicle, torcetrapib treatment significantly
reduced plasma CETP activity by 31% and increased both total
cholesterol and HDL-cholesterol levels by 33 and 38% respectively
(Table 1). No effect was observed regarding fecal cholesterol and

Table 1
Biochemical parameters in insulin resistant and dyslipidemic hamsters treated with
vehicle or torcetrapib 30 mg/kg QD for 10 days.

Vehicle Torcetrapib
30 mg/kg QD

CETP activity (pmol/uL/h) 56.4 + 2.8 38.8 +£ 1.6™**
Total cholesterol (g/L) 3.89 + 0.13 5.19 £ 0.26™**
HDL-cholesterol (g/L) 1.95 £ 0.12 2.70 £ 0.15***
Fecal cholesterol (pg/day) 380 + 34 399 + 51
Fecal total bile acids (umol/day) 24+3 23+6
Triglycerides (g/L) 3.19 £ 0.21 1.11 £ 0.09***
Glycerol (mg/dL) 497 +0.48 3.44 + 0.30™*
Free fatty acids (mM) 0.634 + 0.015 0.490 £ 0.017***
Blood glucose (mM) 6.1 £04 49 4+ 0.1**
Insulin (pU/mL) 144 £ 25 73 £ 1.1
HOMA-IR ([mM x pU/mL]/22.5) 4.0 +0.8 1.6 +£ 0.3**

Plasma samples were collected from overnight fasted, insulin resistant and dysli-
pidemic hamsters, after 10 days of treatment with vehicle or torcetrapib 30 mg/kg
QD (n = 7 per group, **p < 0.01, ***p < 0.001 vs. vehicle).

bile acids mass excretion. Fasting plasma triglycerides, glycerol and
free fatty acids levels were respectively reduced by 65, 31 and 23%
in torcetrapib treated hamsters (all p < 0.01 vs. vehicle). As
compared with vehicle, torcetrapib treatment significantly reduced
blood glucose and plasma insulin levels by 20 and 49% respectively
(both p < 0.01). Accordingly, HOMA-IR index was reduced by 60%
with torcetrapib treatment (p < 0.01 vs. vehicle).

As shown by FPLC analysis (Fig. 1A), torcetrapib induced the
appearance of apolipoprotein E-rich HDL particles, which also
contained higher levels of apolipoprotein A-I (fractions #24-31), as
compared with vehicle. The increase in HDL-cholesterol levels with
torcetrapib was related to a significant 29% reduction in HDL-
cholesteryl ester fractional catabolic rate (Fig. 1B) after *H-choles-
teryl oleate labeled HDL i.v. injection. HDL-derived H-tracer fecal
excretion was not changed with torcetrapib treatment (data not
shown). Hamsters treated with torcetrapib showed significantly
higher >H-tracer appearance in both plasma and HDL (Fig. 1C), but
not in feces (Fig. 1D), after *H-cholesterol labeled macrophage i.p.
injection. After 3H-2-DOG and insulin i.v. injection (Fig. 1E), torce-
trapib treatment resulted in a 24 and 27% reduction in *H-2-DOG
uptake by inguinal (IWAT) and epididymal (EWAT) adipose tis-
sues, respectively (both p < 0.05 vs. vehicle). While torcetrapib did
not change >H-2-DOG uptake in vastus lateralis (VL; oxidative and
glycolytic fibers) and extensor digitorum longus (EDL; glycolytic)
muscles, a 26% increase was observed in the oxidative soleus
muscle (p < 0.01 vs. vehicle). As well, 3H-2-DOG uptake was
significantly increased by 33 and 70% in liver and heart,
respectively.

To test whether the increase in HDL levels with torcetrapib
treatment stimulates AMPK activation, HDL particles from vehicle-
treated or torcetrapib-treated hamsters were incubated ex vivo
with soleus muscles isolated from hamsters fed the HFHC diet for 2
weeks. As observed after FPLC analysis (Fig. 1A), HDL from
torcetrapib-treated hamsters showed higher levels of apolipopro-
tein E and A-I (Fig. 1F). While HDL from vehicle-treated hamsters
showed no effect, HDL from torcetrapib-treated hamsters signifi-
cantly increased AMPK-phosphorylation by 1.5-fold, as compared
with basal conditions.

4. Discussion

The present study demonstrates that raising HDL-cholesterol
levels with the CETP inhibitor torcetrapib concomitantly alters
both macrophage-to-feces RCT and insulin resistance in a hamster
model.

In insulin-stimulated state, hamsters treated with torcetrapib
showed higher glucose uptake in the oxidative soleus muscle, but
not in vastus lateralis (oxidative/glycolytic) and extensor digitorum
longus (glycolytic) muscles. This finding is consistent with the fact
that, in rodents, oxidative muscles have higher amount of glucose
transporters GLUT4 than glycolytic muscles [9]. However, we
observed a trend towards lower glucose uptake in both visceral and
subcutaneous adipose tissue in vivo, which contrasts with another
in vitro study suggesting that HDL and apolipoprotein A-I increase
glucose uptake in 3T3-L1 adipocytes culture [10]. While this
discrepancy may come from experimental conditions and species
differences, the significant reduction in fasting plasma free fatty
acids and glycerol suggests that raising HDL-cholesterol and
apolipoprotein A-I levels may be beneficial in preventing adipose
tissue lipolysis, an effect already described in humans [11]. Our data
also indicate that raising HDL levels show benefits at both the he-
patic and cardiac levels. This observation is in line with other
studies suggesting a protective effect of apolipoprotein A-I against
non alcoholic steato-hepatitis [12] and heart failure [13].
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