

Contents lists available at ScienceDirect

Atherosclerosis

journal homepage: www.elsevier.com/locate/atherosclerosis

Review

Update on marine omega-3 fatty acids: Management of dyslipidemia and current omega-3 treatment options

Howard Weintraub*

New York University School of Medicine Center for the Prevention of Cardiovascular Disease, 530 First Avenue, Suite 9U, New York, NY 10016, United States

ARTICLE INFO

Article history: Received 5 December 2012 Received in revised form 18 July 2013 Accepted 19 July 2013 Available online 31 July 2013

Keywords: Eicosapentaenoic acid Docosahexaenoic acid Dyslipidemia Fish oil Omega 3 fatty acid

ABSTRACT

Low-density lipoprotein cholesterol (LDL-C) is currently the primary target in the management of dyslipidemia, and statins are first-line pharmacologic interventions. Adjunct therapy such as niacins, fibrates, bile acid sequestrants, or cholesterol absorption inhibitors may be considered to help reduce cardiovascular risk. This review discusses the need for alternative adjunct treatment options and the potential place for omega-3 fatty acids as such. The cardiovascular benefits of fish consumption are attributed to the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and a variety of omega-3 fatty acid products are available with varied amounts of EPA and DHA. The product types include prescription drugs, food supplements, and medical foods sourced from fish, krill, algal and plant oils or purified from these oils. Two prescription omega-3 fatty acids are currently available, omega-3 fatty acid ethyl esters (contains both EPA and DHA ethyl esters), and icosapent ethyl (IPE; contains high-purity EPA ethyl ester). A pharmaceutical containing free fatty acid forms of omega-3 is currently in development. Omega-3 fatty acid formulations containing EPA and DHA have been shown to increase LDL-C levels while IPE has been shown to lower triglyceride levels without raising LDL-C levels, alone or in combination with statin therapy. In addition, recent studies have not been able to demonstrate reduced cardiovascular risk following treatment with fibrates, niacins, cholesterol absorption inhibitors, or omega-3 fatty acid formulations containing both EPA and DHA in statin-treated patients; thus, there remains a need for further cardiovascular outcomes studies for adjunct therapy.

© 2013 The Author. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.

Contents

1.	Introd	luction	. 382
2.	Manag	gement of dyslipidemia: guidelines and treatment options	. 382
	2.1.	Fibrates, niacins, bile acid sequestrants, cholesterol absorption inhibitors and the need for other options	. 383
	2.2.	Omega-3 fatty acids	. 384
		Prescription omega-3 treatment options	. 384
		2.3.1. Omega-3 acid ethyl esters (OM3EE)	. 385
		2.3.2. Icosapent ethyl (IPE)	. 385
	2.4.	Other and emerging omega-3 fatty acid treatment options	. 385
		2.4.1. Omega-3 free fatty acids (OM3FFA)	
		2.4.2. Krill oil	
		2.4.3. Algal oil	. 386
		2.4.4. Plant oil	
	2.5.	Omega-3 cardiovascular outcome studies	. 386
		Omega-3 considerations	
3.		usions	

^{*} Tel.: +1 212 599 5030; fax: +1 212 599 2918. E-mail address: Howard.Weintraub@nyumc.org.

Conflict of interest and source of funding	388
Acknowledgments	. 388
References	. 388

Abbreviations	HR hazard ratio; IPE icosapent ethyl;			
ACCORD Action to Control Cardiovascular Risk in Diabetes AHA American Heart Association	IMPROVE-IT Improved Reduction of Outcomes: Vytorin Efficacy International Trial;			
AIM-HIGH Atherothrombosis Intervention in Metabolic	JELIS Japanese EPA Lipid Intervention Study;			
Syndrome with Low HDL/High Triglycerides: Impact	LDL-C low-density lipoprotein cholesterol;			
on Global Health Outcomes:	Lp-PLA ₂ lipoprotein-associated phospholipase A ₂ ;			
ALA alpha linoleic acid;	MARINE Multi-center, Placebo-controlled, Randomized,			
Apo B apolipoprotein B;	Double-blind, 12-week study with an Open-label			
CHD coronary heart disease;	Extension;			
CI confidence interval:	•			
- · · · · · · · · · · · · · · · · · · ·	NHANES National Health and Nutrition Examination Survey;			
COMBOS Combination of Prescription Omega-3 with	NKO Neptune Krill Oil;			
Simvastatin study;	OM3EE omega-3 acid ethyl esters;			
CV cardiovascular;	OMEGA Omega 3 Fatty Acids on Top of Modern Guideline-			
DHA docosahexaenoic acid;	adjusted Therapy;			
ECLIPSE Epanova Compared to Lovaza in a Pharmacokinetic	OM3FFA omega-3 free fatty acids;			
Single-dose Evaluation;	OPERA Omega-3 Fatty Acids for Prevention of Post-operative			
ENHANCE Ezetimibe and Simvastatin in Hypercholesterolemia	Atrial Fibrillation trial;			
Enhances Atherosclerosis Regression trial;	ORIGIN Outcome Reduction with Initial Glargine Intervention;			
EPA eicosapentaenoic acid;	PUFA polyunsaturated fatty acid			
ESPRIT Efficacy and Safety of Add-on Epanova to Statin in	REDUCE-IT Reduction in Cardiovascular Events with EPA-			
Subjects With Persistent Hypertriglyceridemia and	Intervention Trial;			
High Risk for Cardiovascular Disease study;	T2DM type 2 diabetes mellitus;			
EVOLVE Epanova for Lowering Very High Triglycerides study;	TC total cholesterol;			
FIELD Fenofibrate Intervention and Event Lowering in	TG triglycerides;			
Diabetes;	TRIFECTA Trial for Efficacy of CaPre on Hypertriglyceridemia;			
GISSI Gruppo Italiano per lo Studio della Sopravvivenza	US FDA United States Food and Drug Administration;			
nell'Insufficienza cardiaca:	VA-HIT Veterans Affairs High-density Lipoprotein Intervention			
GISSI-HF Gruppo Italiano per lo Studio della Sopravvivenza	Trial:			
nell'Insufficienza cardiaca Heart Failure;	VLDL-C very-low-density lipoprotein cholesterol;			
HDL-C high-density lipoprotein cholesterol	VLDL-TG very-low-density lipoprotein triglycerides.			
HPS2-THRIVE Heart Protection Study 2-Treatment of HDL to	1222 To very low delibity inpoprotein disgreefides.			
Reduce the Incidence of Vascular Events:				
Reduce the incidence of vascular Events,				

1. Introduction

The relationship between low-density lipoprotein cholesterol (LDL-C) levels and the risk of coronary heart disease (CHD) in a broad patient population was firmly established by landmark studies conducted in the 1980s [1-4]. As a result of widespread adoption of strategies to lower LDL-C levels over the ensuing three decades, including the development of statins, mean LDL-C levels have declined in the United States [5]. Atherogenic dyslipidemia is characterized by elevated triglycerides (TG) and small LDL particles with reduced levels of high-density lipoprotein cholesterol (HDL-C) and often elevated apolipoprotein B (Apo B) and non-HDL-C [6,7]. While LDL-C levels have declined, results from the National Health and Nutrition Examination Survey (NHANES) showed that 31% of US adults have high fasting TG levels (≥150 mg/dL [1.70 mmol/L]), 16% have high TG levels ($\geq\!200$ mg/dL; 2.26 mmol/L), and 1% have very high TG levels (≥500 mg/dL; 5.65 mmol/L) [8,9]. Substantial progress has been made in the last decade in understanding the effects of omega-3 fatty acids on cardiovascular (CV) disease [10] and lipid parameters including TG and LDL-C [11,12]. The purpose of this review is to provide an update on omega-3 fatty acid treatment options for patients with dyslipidemia.

2. Management of dyslipidemia: guidelines and treatment options

LDL-C remains the primary target for lipid-lowering therapy in the management of dyslipidemia [6,13]. Current recommendations specify that the LDL-C goal is <100 mg/dL (2.59 mmol/L) for highrisk patients (CHD or CHD equivalents, including those with diabetes; 10-year risk >20%) and <70 mg/dL (1.81 mmol/L) for veryhigh-risk patients (multiple major risk factors, severe and poorly controlled risk factors, multiple risk factors of the metabolic syndrome and acute coronary syndrome) [13]. Non-HDL-C is the secondary target in patients with TG \geq 200 mg/dL (5.18 mmol/L) [6]. Therapeutic lifestyle changes are an essential first-line modality for clinical management of dyslipidemia in all patients [6,13]. For individuals who cannot attain target LDL-C levels with diet and exercise alone, statins are first-line pharmacotherapy [6]. In patients with dyslipidemia and elevated LDL-C, fibrates and niacins can be

Download English Version:

https://daneshyari.com/en/article/5947007

Download Persian Version:

https://daneshyari.com/article/5947007

Daneshyari.com