
Colloids and Surfaces A: Physicochem. Eng. Aspects 388 (2011) 77– 83

Contents lists available at ScienceDirect

Colloids  and  Surfaces  A:  Physicochemical  and
Engineering  Aspects

jo ur nal homep a ge: www.elsev ier .com/ locate /co lsur fa

Ion  adsorption  and  external  electric  field  effects  on  isotropic  liquids  using  a
Fermi-like  distribution

R.R.Ribeiro  de  Almeidaa,  H.A.  Pereiraa,b,  L.R.  Evangelistaa,∗

a Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo, 5790 – 87020-900 Maringá, Paraná, Brazil
b Departamento de Física, Universidade Federal de Rondônia, Avenida Presidente Dutra 2965, 78900-500, Rondônia, Brazil

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 24 May  2011
Received in revised form 7 August 2011
Accepted 11 August 2011
Available online 22 August 2011

PACS:
66.10.Ed
68.43.De
05.30.Fk

Keywords:
Adsorption
Fermi statistics
Ionic conduction

a  b  s  t  r  a  c  t

A  Fermi-like  distribution  for  charged  particles  is  used  to  investigate  adsorption  and  external  electric  field
effects in  a typical  confined  sample  of  an  isotropic  liquid.  In the  absence  of adsorption,  expressions  for
the  reduced  potential  across  the  sample  and  for the specific  differential  capacitance  of  the  double  layer
are  established  as a  function  of the  applied  dc  voltage.  In the presence  of  adsorption,  without  external
field,  the  fundamental  equations  of  the  electrostatic  model  are  analytically  solved  in the  limit  of small
potential.  Simple  expressions  for the  reduced  and  chemical  potential  as  well  as  for  the  specific  differential
capacitance  of  the  double  layer  are  established.  The  behavior  of  these  quantities  are analyzed  as  a  function
of the  adsorption  energy,  the  total  density  of  ions  in the  bulk,  and  the  potential  drop  between  the  electrode
surface  and  the bulk.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Recently, a phenomenological Fermi-like distribution for the
particles immersed in a fluid was proposed in order to describe
the surface adsorption of charged or neutral particles in isotropic
liquids [1,2]. The motivation for that new approach was  to consider
a statistical description for the adsorption phenomenon not limited
to non-interacting adsorbate–adsorbate systems. The Fermi-like
distribution, owing to the exclusion principle, naturally takes into
account the occupation of the adsorption sites without the need
to consider steric potentials with artificial cut-offs. For this reason,
the saturation in the coverage of the surface by the adsorbed par-
ticles can be found also in the perfect gas approximation. A similar
statistical distribution was employed to describe ionic liquids with
particular emphasis on the behavior of the double-layer capaci-
tance [3].  This theory resulted in a simple analytical expression for
the double-layer capacitance, beyond the Gouy–Chapman formula
[4], and has attracted the attention of other approaches [5–10].
When an external electric field is applied to a cell of an isotropic
liquid, and the adsorption phenomenon is absent, a spatially
dependent electric field distribution across the sample arises, in
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view of the induced charge separation. On  the other hand, the
selective ion adsorption, that may  occur in view of the existence of
some electrochemical forces acting on the surface, also promotes a
spatial redistribution of charges in the sample. However, while the
external field produces an odd distribution of charges, the adsorp-
tion phenomenon is responsible for an even distribution of charges
when identical surfaces are considered, as will be done here.

In this work, a Fermi-like description for mobile ions, in the
hypothesis of fully dissociated positive and negative charges and in
the continuum approximation, is used to face two  different prob-
lems. The first problem considers the action of an external electric
field (dc regime) assuming that the surfaces are perfectly blocking.
In this framework, we  present the fundamental equations of the
model, with particular emphasis on the so-called Poisson–Fermi
equation arising from the use of “Fermi” statistics for the distribu-
tion of particles in connection with the Poisson’s equation for the
spatial profile of the electrical potential. These equations are solved,
giving useful expressions for the electrical potential across the sam-
ple. Moreover, the double-layer capacitance is determined and its
behavior is investigated as a function of the difference of potential
across the sample, due to the external power supply. The second
problem we consider deals with selective adsorption effects at the
surfaces limiting the sample, but now in absence of external applied
voltage. In this scenario, the surface density of adsorbed charges
gives rise to a surface electric field whose intensity decays as we
move away from the surface. To analyze the effects of this field,
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the fundamental equations are exactly solved in the limit of small
potential. This procedure permits us to obtain analytical expres-
sions for the specific differential capacitance of the double layer. It
is a simple approach whose controlling parameters are limited to
the number of sites in the bulk, the same quantity at the surface,
and the adsorbing energy, which is a rather well known parameter.
Furthermore, it allows to consider the density of possible adsorbed
particles as a control parameter for the adsorption phenomenon.
An approach of this kind is well tailored for isotropic liquids in the
presence of high density of ions [11] but, in principle, can find appli-
cations in other contexts as, for instance, oriented nematic liquid
crystals doped with charged particles [12–18].

This paper is organized as follows. In Section 2, the fundamen-
tal equations of the Fermi-like model are solved in the presence
of an applied voltage to obtain the profile of the reduced poten-
tials across the sample. These results allow us to obtain the electric
field profile as well as the spatial dependence of the bulk density
of positive and negative charges for significant values of the bias
voltage. In addition, the behavior of the double-layer capacitance
is investigated as a function of the applied voltage. In Section 3,
selective adsorption effects are considered in the absence of exter-
nal voltage. The equations of the model are solved in the limit of
low potential, giving exact analytical expressions for the potentials
(electrical and chemical). The double-layer capacitance in this lim-
iting case is investigated as a function of the adsorbing energy and
as a function of the number of ions per unit volume in the sample.
Some concluding remarks are presented in Section 4.

2. Fermi-like model: external field effects

We first consider the ion distribution in an isotropic fluid lim-
ited by two nonadsorbing surfaces of thickness d, placed at z = ± d/2,
where z is the coordinate normal to the surfaces of the blocking
electrodes limiting the sample in an essentially one-dimensional
problem. The liquid is assumed as locally and globally neutral, con-
taining n+ = n− = N ions, per unit volume, in the absence of external
field. The densities of positive and negative ions are given by a
Fermi-like distribution, in the form

n±(z) = NB

1 + exp(± )
, (1)

where NB is the bulk density of sites. We  indicate by  (z) = qV(z)/kBT
the reduced potential of a positive ion, of charge q, in kBT units,
where V(z) is the electrical potential, kB is the Boltzmann constant,
and T the absolute temperature. We  assume that V(± d/2) = ± U/2,
where U is the difference of potential across the sample due to the
external power supply. Hence, V(− z) = − V(z).

The net charge density of the system is � = q(n+ − n−) which, with
the help of Eqs. (1),  can be written as

� = −qNB tanh

(
 

2

)
. (2)

A simple calculation shows that

∫ d/2
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�dz = −qNB

∫ d/2
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)
dz = 0, (3)

stating the global neutrality of the system

Nd =
∫ d/2

−d/2

n+(z)dz. (4)

The charge distribution and the electrical potential are connected
by Poisson’s equation d2V/dz2 = − �/�, which, by using the defini-
tion of  (z) and Eq. (2),  can be put in the form

d2 

dz2
= 1
�2

tanh

(
 

2

)
, (5)

where �2 = 2N�2
0/NB, in which the intrinsic parameter is �0 =√

�kBT/(2Nq2), i.e., the usual Debye’s length [2].  Notice that,
for a diluted system, in general N < NB. It is possible to have
an idea about the order of magnitude of NB if we consider
that typical values of �0 ≈ 1 �m,  q = 1.6 × 10−19 C (monovalent
ions), �≈ �0 = 8.85 × 10−12 F/m, and kBT ≈ 4 × 10−21 J. This gives
N ≈ 7 × 1017 m−3.

By Eq. (5) we get

d 
dz

= 2
�

√
ln[cosh( /2)] + k,  (6)

where k is an integration constant to be determined by the bound-
ary conditions:

 (±d/2) = ±u = ±1
2
U

VT
, (7)

where VT = kBT/q is the thermal potential. By using (7),  we can
rewrite Eqs. (4) and (6) in the form

I(k, u) =
∫ u

−u

d √
ln[cosh( /2)] + k

= 2d
�

(8)

and

J(k, u) =
∫ u

−u

d 

[1 + exp( )]
√

ln[cosh( /2)] + k
= N

NB

2d
�

(9)

From Eqs. (8) and (9),  we obtain

I(k, u)J(k, u) = 2
(
d

�0

)2

. (10)

Using Eqs. (6) and (10), one can determine  , when the other
parameters characterizing the sample are given. As can be seen
from Eqs. (8) and (9),  � = �(k), and, hence, � = �(U), i.e., the effective
Debye’s screening length depends on the applied voltage. These
equations constitute a simple and complete framework to investi-
gate the effect of external electric field on an isotropic fluid when
“Fermi” statistics is considered. The spatial profile of the electrical
potential in VT units (i.e. the reduced potential) is shown in Fig. 1
for a typical value of �0, consistent with the hypothesis that N < NB.

To complete the presentation of the main results of the model,
the electric field profile inside the sample can be analyzed. It is
easily determined from (6),  in the form E(z) = − VTd /dz.  In Fig. 2,
the profile of the electric field is exhibited for two  different val-
ues of u. In Fig. 3, the spatial distribution of positive and negative
ions are shown for two  different values of the applied potential.
As expected, there is an increasing accumulation of charges near
the electrodes with the increasing of the bias voltage that reaches
a saturation for large enough values of u. However, this satura-
tion is more pronounced for “Fermi” statistics than the “classical”
Maxwell–Boltzmann case (see e.g., Ref. [1]). For this reason, the
present approach can be the more suitable one when we  consider
densely packed ionic liquids.

2.1. The double-layer capacitance

The specific differential capacitance of the double layer is
defined as [19]:

C = d�
dU
, (11)
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