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a b s t r a c t

Numerical simulation results of mass transfer to and from drops with applications to liquid–liquid
extraction processes are considered. Multiple solute components (specifically 2 solute components) are
assumed to be present in the drop. The system is described using the theory of multi-component mass
transfer, in which a flux of one component can be coupled to a concentration gradient in the other. The
nominal strength of this coupling is determined by the off-diagonal elements of a diffusivity matrix.
Naively it might be thought that, if the off-diagonal matrix elements are small compared to the diagonal
ones, then the influence of coupling between components is essentially negligible. It is shown however
that this is not always the case. Particular focus is given to the case where one solute component has
an imposed concentration difference between the drop interior and the drop surface, whilst the other
solute has no such difference imposed. Mass transfer is still observed for the latter component, which is
a clear indication of coupling due to multi-component diffusion effects. The mass fraction of the compo-
nent with no imposed concentration difference evolves first by deviating from its initial value, but later
returns back to this initial value. It is possible to place a bound on the extent of this deviation in terms
of the elements of the diffusivity matrix and any concentration difference imposed on the other compo-
nent. Circulation flow, if present within the drop, is found only to have a weak influence on the maximum
extent of the aforementioned deviation. It has however a role in speeding up the rates of deviation and
subsequent return of component mass fraction compared to a non-circulating rigid drop case. Circulation
also determines the order in which individual pointwise locations in the drop experience this deviation
and subsequent return: only points near the drop surface experience a rapid evolution in the absence
of circulation, whereas points either near the surface or near the axis evolve rapidly in the presence of
circulation.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Mass transfer by liquid–liquid extraction is important in
many chemical engineering operations [1–5]. During liquid–liquid
extraction, one or more solutes transfers to or from dispersed drops
of one solvent phase to a surrounding continuous phase of an
immiscible solvent. The mass transfer process is driven by diffusion
from one phase to the other immiscible phase. One complicating
feature however is that when more than one solute is present, it is
possible to have multi-component mass transfer in which a concen-
tration gradient of one component drives a flux of another [6–17].
In order to analyse this complicating feature it is sufficient to con-
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sider a ternary system, with two solutes and one solvent present
(and this is what will be studied here), although it should be empha-
sised that the multi-component mass transfer theory applies more
generally to a system with an arbitrary number of components.

Coupling between concentration gradients and fluxes of
different components can have serious consequences for the
liquid–liquid extraction process. The nominal strength of the cou-
pling is measured by off-diagonal elements of a diffusivity matrix
[16]. When these off-diagonal elements are large, strong coupling
between solute components is expected, and multi-component
effects certainly cannot be ignored. The converse however is not
true. Even in the case where off-diagonal elements are small
(compared to diagonal ones), it might not be possible to neglect
multi-component effects altogether. Suppose, for example in the
case where two solutes are present, that solute 1 is the one we
are trying to transfer and solute 2 is a contaminant present in both
dispersed drop and surrounding immiscible continuous phases. If
the transfer of solute 1 also drives transfer of solute 2, then the
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concentration of solute 2 in either solvent phase will change over
time, even if the concentration (or more generally chemical poten-
tial [16,18]) of solute 2 is initially equal in both phases, meaning
that there is no mass transfer driving force for solute 2 on its own.
It is possible that the level of the contaminant solute 2 might be
acceptable initially (for some desired target product purity) but
evolves over time to become unacceptable. Even very small changes
in the level of solute 2 might need to be determined via the the-
ory of multi-component mass transfer if the initial concentration
level is near to some critical purity. It therefore needs to be deter-
mined under what circumstances these multi-component effects
are important, and under what circumstances a simpler single com-
ponent theory might be acceptable. This may depend not only on
the size of the off-diagonal diffusivity matrix elements, but also on
the initial and boundary conditions applied to the solute concen-
trations: such a case will be studied here.

Apart from multi-component effects, another complicating fea-
ture of mass transfer in liquid–liquid extraction is circulation
[19–27]. It has been described [24–26] how circulation drives mate-
rial around an internal stagnation point located typically quite close
to the equatorial plane and at a radial coordinate about 0.7 of the
radius of the drop. Circulation speeds up mass transfer compared to
a rigid (non-circulating) drop by advecting material from the drop
surface to the drop interior. In particular, transferred material is
carried by the circulation from near the drop surface to along the
drop axis.

However if the streamline pattern within the drop is laminar
[26], which is often the case [24,25,28,29], the system still relies
on diffusive mass transfer to take material from the surface-and-
axis towards the internal stagnation point. This problem has been
analysed in detail [26], but it was claimed that the systems stud-
ied (although formally multi-component ones) actually behaved
quite similar to single component ones. It is the wish to observe
‘true’ multi-component effects including the presence of circulation
which has prompted the present work.

This paper is laid out as follows. In the next section (i.e. Sec-
tion 2), the theory of multi-component mass transfer is introduced.
After that a special case of multi-component mass transfer is con-
sidered (Section 3), whereby one of the components has no imposed
concentration difference: this leads to some simplifications in
the formulation, and also some insightful physical interpreta-
tions of the resulting multi-component coupling terms. Section
4 briefly describes the numerical methodology used to solve the
multi-component mass transfer equations. Numerical results are
analysed in Section 5, whilst Section 6 offers conclusions.

2. Multi-component theory of mass transfer

The equation that governs multi-component mass transfer can
be written [16,26] as:

∂w

∂t
= −Pe u · ∇w + �∇2w. (1)

The various terms in this equation can be defined as follows.
The term w is a vector of solute mass fractions, so that with

two solutes present w1 denotes solute 1 and w2 denotes solute
2. The terms ∇ and ∇2 are the gradient and Laplacian operators
(made dimensionless with respect to the drop radius R). Meanwhile
t denotes time. This has been made dimensionless on a diffusive
time scale, R2/〈 D 〉, where R is the drop radius, and 〈D 〉 is a typical
diffusivity scale, comprised of the average of the infinite dilution
diffusivities of all the various components in the system.

The term Pe is the Peclet number, which is defined as RUdrop/〈 D 〉,
where Udrop is the drop translation speed relative to the continuous
phase. Physically Pe represents the ratio between the diffusive time
scale and the streamline circulation time scale. A typical value of

Pe is of the order of tens of thousands [26], i.e. diffusion is slow and
circulation is rapid, but high Pe simulations are numerically stiff
and hence expensive to solve. Moreover, for much of a drop’s evo-
lution, any high Pe simulation results asymptote towards a ‘master
curve’ [26]. Thus useful intuition can be gained with less numerical
expense for Pe = 1000 or even Pe = 100.

The field u is the velocity field within and around the drop. It is
made dimensionless on the scale Udrop. For simplicity (and by con-
trast with a number of other studies [30–33]) we will assume that
the velocity field u is steady over time, and that stresses on the drop
surface associated with the velocity field are insufficient to deform
it out of spherical. Subject to these assumptions, the field u can be
determined by (numerical) solution of the Navier–Stokes equations
(see e.g. [28,29]) given the drop Reynolds number Re, and also the
ratios between internal and external viscosity, and between inter-
nal and external density. It has also been shown that truncated
Galerkin expansions [24–26,34,35] give acceptable approximations
to the velocity fields. In what follows, we shall employ the same
truncated Galerkin velocity field as in [26], which corresponds to
Re = 30 with equal internal and external viscosities, and equal inter-
nal and external densities. A sketch of the resulting streamline
pattern is shown in Fig. 1. Notice that the field u is axisymmetric,
and hence the mass fraction field w is likewise.

The term � is the multi-component diffusivity matrix [16]
(made dimensionless on the scale 〈D 〉). In the case where there
are two solutes, it is a 2 × 2 matrix, with elements �11, �12, �21,
�22. The off-diagonal elements �12 and �21 describe the multi-
component couplings between the concentration gradient of one
solute and the mass flux of another. The off-diagonal elements can
be either positive or negative, depending on the direction in which a
gradient of one solute drives a flux of the other. Moreover, if the off-
diagonal elements vanish, the two solutes behave as independent
single component systems.

The elements of the matrix � can be predicted via the so called
Maxwell–Stefan theory [10,16,36–39]. These matrix elements are
found to be functions of mass fraction. However it has been shown
that during the course of a given liquid–liquid extraction operation,
the variation of � is quite weak [40]. Thus � can be assumed to be
a constant during the course of any given extraction operation. This
has already been anticipated in Eq. (1) as the diffusivity � has been
taken outside the Laplacian operator. More details regarding � will
be given presently.

Eq. (1) needs to be solved with appropriate sets of initial condi-
tions and boundary conditions. One has a choice of solving either
[27] a coupled/‘conjugate’ problem (both inside and outside the
drop, with mass fluxes and chemical potentials matched on the
drop surface), or an external problem (i.e. outside the drop only)
or an internal problem (i.e. inside the drop only). Technically it is
the (more complicated) coupled problem which should be solved,
whereas the external and internal problems are merely approxima-
tions. The external problem tends to be most relevant for extraction
from a gas bubble [15,41] rather than the liquid drop case (on the
grounds that mass transport tends to be extremely rapid in the gas
phase, implying the transport in the external liquid phase is the
rate-limiting step). It has been claimed however [26] that the inter-
nal problem may be a reasonable approximation to the full coupled
liquid–liquid problem, especially in the limit of large Pe. The reason
is as follows. Liquid inside the drop circulates around many times
as mass transfer proceeds, whereas (in the frame of reference of
the drop) liquid outside the drop flows past the drop surface once
only. Fluid elements outside the drop therefore have less time to
exchange mass amongst themselves (and so exchange mass over a
smaller distance) than those inside the drop. If concentration dif-
ferences tend to be realised over smaller distances outside the drop
than inside it, this means the concentration differences must also
be smaller outside to keep the fluxes matched. Hence, in the inter-



Download English Version:

https://daneshyari.com/en/article/594745

Download Persian Version:

https://daneshyari.com/article/594745

Daneshyari.com

https://daneshyari.com/en/article/594745
https://daneshyari.com/article/594745
https://daneshyari.com

