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a b s t r a c t

A potential of mixing applications on an electroosmotic flow (EOF) with thermal effects is examined.
For the thermal conditions, we apply the sinusoidal temperature boundary conditions on the walls. We
exemplify two cases: (1) the mixing of laminar flows and (2) Taylor–Aris dispersion model. In the first
case, we consider to mix two different samples that flow in parallel along the channel. In addition, by
scaling analysis, we qualitatively examined the mixing result. The mixing efficiency is proportional to
the temperature difference. Through the Taylor–Aris dispersion model, we found that the temperature
gives rise to an increase of the Deff(T) at the low Peclet number where the diffusion and convection effect
coexist.

Crown Copyright © 2010 Published by Elsevier B.V. All rights reserved.

1. Introduction

Miniaturization realizes a Lab-On-a-Chip (referred to as LOC)
device that integrates many laboratory functions on a single chip
of the size of a coin. The LOC has a small channel size less than
1 mm. As the LOC is a reactor, to mix or separate different samples
is important. Under the viscous dominant environment, the elec-
troosmosis is an outstanding way to control the flow in microfluidic
devices. To control and mix the samples, many researches are per-
formed [1–5]. However, there is no enough researches on thermal
effects for mixing or separating the samples.

Most previous researches are the spontaneously thermal phe-
nomena like a joule heating and viscous dissipation [6–10], not
further mentioned in this paper. Ross and Locascio [11] first
attempted the temperature gradient focusing (TGF) technique by
heating and cooling block apparatus in microchannels. In addition,
Edwards et al. [12] demonstrated a micro-scale thermal flow-
field fractionation (ThFFF) system under the pressure driven (PDF)
flow to separate the samples. On the other hand, Nguyen and Wu
[13] simply slightly introduced somewhat a potentiality of the
thermal energy for the mixing enhancement, not in detail. They
exemplified that the use of thermal sensitive fluorescent dyes and
thermal bubbles by heating means [14,15]. Actually, through tem-
perature dependent physicochemical properties, Kwak et al. [16]
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showed that the thermal effects generate a shear flow and even a
wavy flow, so-called the thermally driven electroosmotic Couette
flow.

Here, we assess the mixing efficiency in the EOF with thermal
effects, viz., the thermally driven electroosmotic Couette flow. Prac-
tically, all variables of the electroosmotic mobility (�=��/�) are a
function of temperature. The diffusion coefficient is also a func-
tion of temperature, which is estimated by the Stokes–Einstein
model. We apply the spatially induced sinusoidal temperature
boundary conditions to generate the wavy flow. Two examples
are considered: (a) the mixing model on the laminar flows and (b)
Taylor–Aris dispersion model. We take into account the enhance-
ment of the mixing efficiency by thermal effects and the effective
diffusion coefficient by varying Peclet numbers and temperature
differences.

2. Statement of the problem

To assess the potential of mixing applications in EOF with ther-
mal effects we consider the 2D microchannel with the thermal
effects as shown in Fig. 1. First, two different laminar samples flow
in parallel while applying the spatially arbitrary thermal boundary.
By varying temperature difference, we examine the enhancement
of the mixing efficiency at the end of the microchannel. Second, to
understand the mass transport mechanism we determine the effec-
tive diffusion coefficient as considering the Taylor–Aris dispersion
model. We obtain the effective diffusion coefficient by measuring
the propagated band thicknesses within the given traveling time.
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Nomenclature

c concentration of a species
Cp specific heat capacity [kJ/kg K]
D diffusion coefficient of species [m2/s]
�E electric field strength (Ex, Ey) [V/m]
e absolute charge of electron (1.602 × 10−19 C)
F Faraday constant
h channel height [m]
kB Boltzmann constant (1.381 × 10−23 J/K)
n0 ionic concentration of electrolyte solution [M]
l length of the channel [m]
p pressure [N/m2]
R0 mean particle diameter [m]
R ideal gas constant
t time [s]
T temperature [K]
U thermally driven electroosmotic flow velocity [m/s]
�u velocity vector (u,v)
x, y longitudinal/transverse coordinate
w characteristic length scale of diffused layer [m]
EDL electric debye layer
EOF electroosmotic flow
Z valence

Greek symbols
� density [kg/m3]
�e net charge density [Cm−3]
� permittivity [CV/m]
�0 vacuum permittivity [CV/m]
� electroosmotic mobility [m2/V s]
� zeta potential [V]
� dynamic viscosity [Pas]
� electric potential [V]
 intrinsic electric potential created in EDL [V]
� thermal conductivity [W/mK]
	 electrical conductivity [m2S/mol]

 Debye layer thickness [m]
� mixing efficiency [%]
� residence time of fluid [s]
∇ (∂/∂ x, ∂/∂ y)

Subscripts
I initial state
∞ complete state
0 reference physical property
L lower wall of the channel
U upper wall of the channel
t ∂/∂ t

For this research, the EOF is the uniform flow due to much
small electric double layer (referred to as EDL) compared with the
channel height, 
/h � 1. The horizontal walls contacting liquid are
charged with a zeta potential, �. An external electric field �E = (E,0)
is applied to drive electroosmosis. For the sake of the simplicity,
the assumptions to be imposed are: an (1:1) symmetric electrolyte
(almost pure water) is only in the channel; the brownian motion
of molecules is excluded; in the diffusion mechanism, we assumed
that the particles are spherical and the solute size is larger than
the molecule of the solution. Under the mild or weak electric field
the joule heating can be negligible. And, the viscous dissipation is
excluded because this only becomes a significant as the very thin
channel (the channel height h less than 10 nm) [8].
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Fig. 1. Schematic of the thermally driven electroomostic Couette flow in the two-
dimensional microchannel where U is a thermally driven electroosmotic Couette
flow, h is the channel height, l is the channel length,�T is the temperature difference
between two walls, and the subscripts L and U denote the lower and the upper
plate, respectively. In case of the thin EDL (
/h � 1) assumption, we could apply
the slip boundary conditions at each wall. (a) Geometry and boundary conditions,
(b) the cartoon of the thermally driven electroosmotic Couette flow, and (c) the
temperature-dependent Helemholtz–Smoluchowski equation.

2.1. Governing equations

To interpret electroosmosis the Gouy–Chapman continuum
model is employed. The governing equations are the two
dimensional unsteady Navier–Stokes (NS) equations for an incom-
pressible newtonian fluid. Furthermore, the NS equations are
coupled with the electric potential, heat and mass transport equa-
tions:

∇ · �u = 0; (1)

�
(�ut + �u · ∇ �u

)
= −∇p− �e �E + ∇ · (�∇�u); (2)

�Cp(Tt + �u · ∇T) = ∇ · (�∇T); (3)
(
ct + �u · ∇c) = ∇ · (D∇c) ; (4)

where �u = (u, v) is the velocity vector; p, the pressure; �e, the net
charge density; T, the absolute temperature; �E = (Ex, Ey), the exter-
nal electric potential; �, the density of the fluid property; �, the
dynamics viscosity; �, the thermal conductivity; Cp, the heat capac-
ity; c, the concentration of a species; D, the diffusion coefficient of
the species. ∇ is the gradient operator, ∇ =(∂/∂ x, ∂/∂ y) and the sub-
script t is ∂/∂ t. All temperature-dependent physical properties will
be mentioned in Section 2.2 later. The distributions of these electric
potentials are governed by the Poisson equation:

∇ · (ε∇�) = −�e, (5)

where ε is the permittivity of electrolyte (assumed as the water)
is discussed in Section 2.2 as well. The Boltzmann distribution
assumed as follow;

�e = −2eZn0 sinh
(
eZ�

kBT

)
. (6)

where e is the absolute charge of electron (1.602 × 10−19 C), n0 the
ionic concentration of electrolyte solution, kB the Boltzmann con-
stant (1.381 × 10−23 J/K), Z the ionic valence, and � the intrinsic
electric potential created in the EDL. Combining Eqs. (5) and (6),
we can obtain the Poisson–Boltzmann equation.
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