



## Duration of Benefit in Patients With Autoimmune Pulmonary Alveolar Proteinosis After Inhaled Granulocyte-Macrophage Colony-Stimulating Factor Therapy

Ryushi Tazawa, MD; Yoshikazu Inoue, MD; Toru Arai, MD; Toshinori Takada, MD; Yasunori Kasahara, MD, FCCP; Masayuki Hojo, MD; Shinya Ohkouchi, MD; Yoshiko Tsuchihashi, MD; Masanori Yokoba, MD; Ryosuke Eda, MD; Hideaki Nakayama, MD; Haruyuki Ishii, MD; Takahito Nei, MD; Konosuke Morimoto, MD; Yasuyuki Nasuhara, MD, FCCP; Masahito Ebina, MD; Masanori Akira, MD; Toshio Ichiwata, MD; Koichiro Tatsumi, MD, FCCP; Etsuro Yamaguchi, MD; and Koh Nakata, MD

Background: Treatment of autoimmune pulmonary alveolar proteinosis (aPAP) by subcutaneous injection or inhaled therapy of granulocyte-macrophage colony-stimulating factor (GM-CSF) has been demonstrated to be safe and efficacious in several reports. However, some reports of subcutaneous injection described transient benefit in most instances. The durability of response to inhaled GM-CSF therapy is not well characterized.

Methods: To elucidate the risk factors for recurrence of aPAP after GM-CSF inhalation, 35 patients were followed up, monitoring for the use of any additional PAP therapies and disease severity score every 6 months. Physiologic, serologic, and radiologic features of the patients were analyzed for the findings of 30-month observation after the end of inhalation therapy.

Results: During the observation, 23 patients remained free from additional treatments, and twelve patients required additional treatments. There were no significant differences in age, sex, symptoms, oxygenation indexes, or anti-GM-CSF antibody levels at the beginning of treatment between the two groups. Baseline vital capacity (% predicted, %VC) were higher among those who required additional treatment (P < .01). Those patients not requiring additional treatment maintained the improved disease severity score initially achieved. A significant difference in the time to additional treatment between the high %VC group (%VC  $\geq$  80.5) and the low %VC group was seen by a Kaplan-Meier analysis and a log-rank test (P < .0005).

Conclusions: These results demonstrate that inhaled GM-CSF therapy sustained remission of aPAP in more than one-half of cases, and baseline %VC might be a prognostic factor for disease recurrence.

Trial registry: ISRCTN Register and JMACCT Clinical Trial Registry; No.: ISRCTN18931678 and JMAIIA00013; URL: http://www.isrctn.org and http://www.jmacct.med.or.jp

CHEST 2014; 145(4):729-737

**Abbreviations:** A-aDO $_2$  = alveolar-arterial oxygen difference; Ab = antibody; aPAP = autoimmune pulmonary alveolar proteinosis; AT = additional treatment; BALF = BAL fluid; CEA = carcinoembryonic antigen; DLCO = diffusing capacity of the lung for carbon monoxide; DSS = disease severity score; FR = free from additional treatment; GM-CSF = granulocyte-macrophage colony-stimulating factor; IQR = interquartile range; KL-6 = Krebs von den Lungen-6; LDH = lactate dehydrogenase; PAP = pulmonary alveolar proteinosis; ROC = receiver operating characteristics curve; SP = surfactant protein; VC = vital capacity; WLL = whole-lung lavage

A utoimmune pulmonary alveolar proteinosis (aPAP) is a rare lung disease characterized by the accumulation of surfactant protein (SP), which causes progressive respiratory insufficiency.<sup>1-3</sup> The pathogenesis has

been attributed to the excessive production of a neutralizing autoantibody against granulocyte-macrophage colony-stimulating factor (GM-CSF) that impairs GM-CSF-dependent surfactant clearance mediated by alveolar macrophages.<sup>4-8</sup> On pulmonary function testing, the most common pattern seen is that of a restrictive defect, with a disproportionate reduction in diffusing capacity of the lung for carbon monoxide (DLCO) relative to a modest impairment of vital capacity (VC).<sup>2</sup> The disease is usually treated by whole-lung lavage (WLL), which remains the standard therapy to date.

The first patient successfully treated with subcutaneously administered GM-CSF was reported in 1996.9 In an international multicenter phase 2 trial study, 14 patients were treated with GM-CSF by subcutaneous injection in escalating doses over a 3-month period, with an overall response rate of 43%. <sup>10,11</sup> A subsequent single-center study of 21 patients with aPAP treated with GM-CSF by subcutaneous administration in escalating doses for 6 to 12 months reported an overall response rate of 48%. <sup>12</sup> Several single cases of subcutaneous GM-CSF therapy have reported similar outcomes. <sup>13,14</sup> However, local reaction at sites of injection and other minor toxicities occurred in 85% of patients receiving subcutaneous GM-CSF.<sup>2</sup>

Manuscript received March 12, 2013; revision accepted October 1, 2013

Affiliations: From the Niigata University Medical and Dental Hospital (Drs Tazawa and Nakata), Niigata; the National Hospital Organization (NHO) Kinki-Chuo Chest Medical Center (Drs Inoue, Arai, and Akira), Osaka; the Niigata University Graduate School of Medical and Dental Sciences (Drs Takada and Nakayama), Niigata; the Department of Respirology (Drs Kasahara and Tatsumi), Graduate School of Medicine, Chiba University, Chiba; the Division of Respiratory Medicine (Dr Hojo), National Center for Global Health and Medicine, Tokyo; the Department of Respiratory Medicine (Drs Ohkouchi and Ebina), Tohoku University Medical School, Sendai; the Juzenkai Hospital (Dr Tsuchihashi), Nagasaki; the Institute of Tropical Medicine (Drs Tsuchihashi and Morimoto), Nagasaki University, Nagasaki; the Kitasato University School of Allied Health Sciences (Dr Yokoba), Kanagawa; the NHO Yamaguchi-Ube Medical Center (Dr Eda), Ube; the Kurashiki Municipal Kojima Hospital (Dr Eda), Kurashiki; the Department of Respiratory Medicine (Dr Nakayama), Tokyo Medical University, Tokyo; the Department of Respiratory Medicine (Dr Ishii), Kyorin University School of Medicine, Tokyo; the Department of Respiratory Medicine (Dr Nei), Nippon Medical University School of Medicine, Tokyo; the First Department of Medicine (Dr Nasuhara), Hokkaido University School of Medicine, Sapporo; the Department of Respiratory Medicine (Dr Ichiwata), Tokyo Medical University Hachioji Medical Center, Tokyo; and the Division of Respiratory Medicine and Allergology (Dr Yamaguchi), Department of Medicine, Aichi Medical University School of Medicine, Aichi, Japan.

Funding/Support: This work was supported in part by grants from the Japanese Ministry of Education and Science, Ministry of Health, Labour, and Welfare of Japan [Grant H14-trans-014 to Dr Nakata, H21-Nanchi-Ippan-161 to Dr Inoue, and H24-Rinkensui-Ippan-003 to Dr Tazawa], Grant-in-Aid for Scientific Research [Category B 18406031 to Dr Inoue and Category C 22590852 to Dr Tazawa], and National Hospital Organization of Japan [Category Network to Dr Inoue].

Correspondence to: Koh Nakata, MD, Niigata University Medical & Dental Hospital, Bioscience Medical Research Center, 1-754 Asahimachi-dori, Chuo-ku Niigata, Niigata, Japan 951-8520; e-mail: radical@med.niigata-u.ac.jp

© 2014 American College of Chest Physicians. Reproduction of this article is prohibited without written permission from the American College of Chest Physicians. See online for more details. DOI: 10.1378/chest.13-0603

GM-CSF inhalation is a promising alternative therapy for aPAP that has been demonstrated to lead to functional, biologic, and radiologic improvement. <sup>15-18</sup> Our national, multicenter phase 2 study revealed that the therapy reduced alveolar-arterial oxygen difference (A-aDO<sub>2</sub>) by 12.3 mm Hg in 35 patients who completed the therapy, resulting in 24 responders. No treatment-related side effects were noted. Of importance, our previous phase 2 study showed that there was no significant difference in serologic, physiologic, and CT scan testing, except for serum Krebs von den Lungen-6 (KL-6) levels, between the responders and the nonresponders. <sup>18</sup>

There is limited information regarding the duration of benefit after various treatments of aPAP. In the literature analysis of 55 cases with a therapeutic response to WLL, the median duration of clinical benefit from lavage was 15 months.<sup>2</sup> A phase 2 study of subcutaneous GM-CSF administration demonstrated that 45% of patients required WLL during follow-up observation of  $39 \pm 17.3$  months. 12 In a retrospective analysis of inhaled GM-CSF therapy (250 µg bid), five of 12 patients manifest progressive disease during observation. 17 As the disease progresses very slowly and can fluctuate in some cases, it is necessary to evaluate the prognosis by monitoring prospectively at the same time points after the treatment and by disease severity score as well as the need for additional treatment. The aim of this study was to define the duration of benefit among patients who underwent GM-CSF inhalation therapy.

## MATERIALS AND METHODS

Patients and Protocols

The present study prospectively observed patients who participated in a multicenter phase 2 trial (35 patients, registered as ISRCTN18931678 and JMAIIA00013) of GM-CSF inhalation therapy described previously. In brief, patients who had lung biopsy or cytologic findings diagnostic for pulmonary alveolar proteinosis (PAP), including elevated serum anti-GM-CSF antibody (Ab) levels and no improvement during a 12-week observation period, entered the treatment phase. Recombinant human GM-CSF dissolved in 2 mL of sterile saline was inhaled using an LC-PLUS nebulizer (PARI International). The treatment consisted of high-dose GM-CSF administration (125 µg bid on days 1-8, none on days 9-14; sargramostim) for six repetitions of 2-week cycles, then low-dose administration (125 µg once daily on days 1-4, none on days 5-14) for six repetitions of 2-week cycles (for a total dose of 15 mg). The clinical information including physiologic, serologic, and radiologic features obtained18 was compared with the results of the following 30-month observation.

Patients were regularly evaluated by their physicians at the network hospitals after the GM-CSF inhalation therapy. The worsening dyspnea was evaluated with pulse oximetry, arterial blood gas analysis, or both in outpatient settings. Disease severity in patients was evaluated using PAP disease severity score (DSS) described previously. 19 Patients underwent additional treatments based on

730 Original Research

## Download English Version:

## https://daneshyari.com/en/article/5954677

Download Persian Version:

https://daneshyari.com/article/5954677

<u>Daneshyari.com</u>