

Review

Recent advances in visible light Bi-based photocatalysts

Rong'an He^{a,b}, Shaowen Cao^a, Peng Zhou^a, Jiaguo Yu^{a,*}

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China ^b Department of Bioengineering and Environmental Science, Changsha University, Changsha 410003, Hunan, China

ARTICLE INFO

Article history: Received 26 January 2014 Accepted 12 March 2014 Published 20 July 2014

Keywords: Photocatalyst Bi-based compounds Visible light activity

ABSTRACT

Photocatalysis is considered to be an effective solution for the current energy and environmental crises caused by industrial development. However, the practical application of conventional oxide photocatalysts is restricted by poor visible light adsorption because of their wide band gaps. The study of photocatalysts with a narrow band gap is thus a hot topic. Among oxide photocatalysts, Bi-based photocatalysts have attracted much interest because of their high visible light photocatalytic activity. This review summarizes recent advances into the type, preparation method, morphology control, composite construction, and properties of Bi-based photocatalysts. Finally, this review ends with a discussion on the future development of Bi-based photocatalysts in this exciting research area.

© 2014, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

1. Introduction

Photocatalysis is a newly developed photochemical technique and has been researched since the 1970s. It is based on the promotion of oxidation-reduction reactions by photoexcited electrons and holes from semiconductors under light irradiation. It is a green technique that can be used to produce hydrogen by photocatalytic water splitting, and it can also be used for the oxidation of organic pollutants into CO₂, H₂O, and inorganic ions without secondary pollution. Therefore, photocatalysis is considered to be a promising method of environmental remediation [1–6].

TiO₂ has been widely studied since Fujishima's [4] report on the generation of H₂ and O₂ by photoelectrochemical water splitting using TiO₂ and Pt electrodes. However, because of its large band gap of \sim 3.2 eV, TiO₂ is only active in the UV region, which corresponds to \sim 4% of incident solar light. Many techniques such as elemental doping, dye sensitization and composite construction have been used to modify TiO_2 for an improvement in its photocatalytic performance under visible light. Nevertheless, no significant breakthrough has been made in this area [7–10]. Therefore, the development of novel visible light photocatalysts is important in the field of photocatalysis.

Recently, much attention has been given to a series of visible light active Bi-based photocatalysts. Many Bi³⁺-containing compounds have been found to possess a narrow band gap and exhibit high visible light photocatalytic activity because of the hybridized O 2p and Bi $6s^2$ valence bands [11–14]. Additionally, the empty 6s orbital of Bi⁵⁺ also supports Bi⁵⁺-containing compounds with high visible light photocatalytic activity [15,16]. Bi-based compounds and composites have therefore attracted much research interest in terms of their synthesis, characterization and photocatalytic properties, and they have become an important family of visible light photocatalysts.

^{*} Corresponding author. Tel: +86-27-87871029; E-mail: jiaguoyu@yahoo.com

This work was supported by the National Basic Research Program of China (973 Program, 2013CB632402), the National Natural Science Foundation of China (51272199, 51320105001, 51372190, 21177100), and Aid Program for Science and Technology Innovative Research Team in Higher Educational Instituions of Hunan Province.

DOI: 10.1016/S1872-2067(14)60075-9 | http://www.sciencedirect.com/science/journal/18722067 | Chin. J. Catal., Vol. 35, No. 7, July 2014

2. Bi-based compounds

Many Bi-based compounds have been reported and include Bi₂O₃, Bi₂S₃, Bi₂Ti₂O₇, Bi₂WO₆, and BiOCl etc., and they can generally be classified as binary oxides or sulfides, multi-component oxides, and oxyhalides. The band gap, conduction band (CB) and valence band (VB) energies of typical Bi-based semiconductors are listed in Table 1. Most of these are active in the visible light region with a band gap of less than 3.0 eV, except for BiOF and BiOCl. The band gaps of Bi₂S₃, BiOI and KBiO₃ are less than 2.0 eV, indicating their ability to absorb visible light of longer wavelengths. The photocatalytic activity of semiconductors is not only affected by their band gap, but also by their structures and positions. Therefore, the synthesis and photocatalytic activity of Bi-based compounds have been extensively investigated.

2.1. Bi oxides and sulfides

Bi₂O₃, a common oxide semiconductor, is widely used in the fields of chemical engineering and electronics. Bi₂O₃ has several crystal structures including α -, β -, and γ -phases, with an indirect band gap of 2.6–2.9 eV, which differs for different crystal structures [17,32–35]. In aqueous solution, Bi₂O₃ nanoparticles can be excited under light irradiation by absorbing photons with energies higher than the band gap energy. Photoinduced electrons and holes are thus generated and react with O₂ and H₂O, forming free radicals such as O₂·- and ·OH, respectively. These radicals have high oxidizing abilities and can oxidize organic pollutants adsorbed on the surface of Bi₂O₃ nanoparticles.

Zhang et al. [33] synthesized Bi_2O_3 nanopowders via a simple sonochemical route. They found that the obtained nano-

Table 1

Band structures of Bi-b	ased compounds.
-------------------------	-----------------

General	Compounds	$E_{ m g}$	$E_{ m CB}$ a	$E_{\rm VB}{}^{\rm b}$
formula		(eV)	(eV)	(eV)
$Bi_x MO_y$	Bi ₂ O ₃	2.6-2.9 [17]	$0.16 (E_g = 2.6)$	2.76
	Bi ₂ S ₃	1.3-1.7 [18]	$0.17 (E_g = 1.3)$	1.47
	Bi_2WO_6	2.6-2.7 [13]	$0.43 (E_g = 2.6)$	3.03
	Bi ₄ Ti ₃ O ₁₂ , Bi ₂ Ti ₂ O ₇ , Bi ₁₂ TiO ₂₀	2.5–2.7 [19]	0.21 (<i>E</i> _g = 2.5)	2.71
	Bi ₂ MoO ₆	2.3-2.7 [20]	$0.51 (E_g = 2.3)$	2.81
	BiVO ₄	2.4–2.5 [21]	$0.34 (E_g = 2.4)$	2.74
	Bi ₂ O ₂ CO ₃	3.1-3.3 [22,23]	$0.31 (E_g = 3.1)$	3.41
BiOX	BiOF	3.6 [24]	0.60	4.20
	BiOCl	3.5 [25]	0.15	3.65
	BiOBr	2.6 [26,27]	0.41	3.01
	BiOI	1.8–1.9 [25,26]	$0.57 (E_g = 1.8)$	2.36
$MBiO_3$	NaBiO ₃	2.6 [28]	-0.29	2.31
	KBiO ₃	2.1 [29]	-0.20	1.90
	LiBiO ₃	1.8 [29]	0.18	1.98
	AgBiO ₃	2.5 [30]	0.28	2.78

^a Calculated using $E_{CB} = \chi - E^e - 0.5E_g$ [31], based on the E_g from the reference where χ is the absolute electronegativity of the semiconductor, E_e is the energy of free electrons on the hydrogen scale of ca. 4.5 eV, and E_g is the band gap of the semiconductor.

^b Calculated using $E_{VB} = E_{CB} + E_{g}$.

crystallite Bi₂O₃ effectively degraded methyl orange (20 mg/L) by 86% within 100 min under visible light illumination (λ > 400 nm). However, the photocatalytic efficiency of pure Bi₂O₃ is still not high enough. Several methods have been used to improve the photocatalytic activity of Bi₂O₃ such as metal ion doping, and multi-component composite construction. For example, Bi₂O₃ doped with Pd(II) and V(V) exhibited higher photocatalytic activity [34,36,37]. Huang et al. [38] prepared pure α -Bi₂O₃ and mixed phases of α -Bi₂O₃, (BiO)₄CO₃(OH)₂ and Bi₂O₂CO₃, using a hydrothermal method by optimizing the amount of NaOH and ammonia added. The mixed-phase samples showed higher activity than the single-phase α -Bi₂O₃ for the degradation of rhodamine B under UV light.

Bi₂S₃, a Bi sulfide with a narrow band gap of 1.3–1.7 eV, is easily excited by visible light to generate photoinduced electron-hole pairs. It has been found that Bi₂S₃ crystals usually exist in an orthorhombic phase and have a layered structure. They have different morphologies such as nanoplates, nanorods, and nanowires [39]. Bi₂S₃ is normally synthesized by a hydrothermal method using an alcohol and/or water as the solvent, Bi(NO₃)₃ or BiCl₃ as the Bi source, and sulfur, thiacetamide, or sulfourea etc. as the S source. For instance, Bao et al. [40] reported the synthesis of Bi₂S₃ nanowires by a hydrothermal reaction between Bi(NO₃)₃ and mercaptosuccinic acid. The obtained Bi2S3 nanowires exhibited nonlinear current-voltage (I-V) characteristics and excellent photoresponse. The Bi₂S₃ materials prepared by the different methods have different morphologies and also different band gaps. Researchers are thus attempting to prepare Bi₂S₃ materials using various methods.

2.2. Bi-based multi-component oxides

Bi-based multi-component oxides are a series of oxysalts including Bi₄Ti₃O₁₂, Bi₂WO₆, BiVO₄, and Bi₂MoO₆ etc., and they are considered to be hybrid oxides composed of Bi₂O₃ and metal oxides such as TiO₂, W₂O₃, V₂O₅, and Mo₂O₃ etc. with stoichiometric ratio, and usually have a layered Aurivillius structure, i.e. [Bi₂O₂]²⁺ layers inter-grown with metal oxide layers along the c axis.

Bi titanates are a family that includes various phases hybridized by Bi₂O₃ and TiO₂ units. While those used for photocatalysis are mainly Bi₄Ti₃O₁₂, Bi₂Ti₂O₇, and Bi₁₂TiO₂₀ [6]. As shown in Fig. 1, their crystal structures consist of connected BiO_n and TiO_n polyhedrons with different n values. The VB of Bi titanates consists of a 6s² filled orbital and an 0 2p orbital, and the CB consists of a Ti 3d empty orbital. In contrast to TiO₂, whose VB and CB consist of 0 2p and Ti 3d orbitals, respectively, Bi titanates have a narrower band gap of 2.5-2.8 eV, and can thus be easily excited by visible light for higher photocatalytic activity [14,19]. Bi titanates can be synthesized by hydrothermal and chemical-solution-decomposition methods [42]. Treatment with microwave irradiation or sensitization can further improve the photocatalytic activity of Bi titanates. Yang et al. [43] synthesized hierarchical flower-like Bi12TiO20 by a microwave assisted hydrothermal method. The obtained Bi₁₂TiO₂₀ exhibited enhanced visible light photocatalytic perDownload English Version:

https://daneshyari.com/en/article/59617

Download Persian Version:

https://daneshyari.com/article/59617

Daneshyari.com