ELSEWIER

Contents lists available at ScienceDirect

International Journal of Cardiology

journal homepage: www.elsevier.com/locate/ijcard

Correspondence

Scaffold thrombosis: Exaggerated illusion, or when statistics rules

Alexander N. Kharlamov *

De Haar Research Foundation, Rotterdam, The Netherlands New York, NY, USA

ARTICLE INFO

Article history: Received 20 January 2016 Accepted 2 February 2016 Available online 4 February 2016

Keywords: Bioresorbable scaffold Scaffold thrombosis

For some, bioresorbable vascular scaffolds (BVS) represent one of the most promising technologies in interventional cardiology, but in recent months, multiple reports examining the performance of the leading BVS suggest that while the device performs as well as a permanent metallic stent clinically, it carries an increased risk of stent/scaffold thrombosis (ST) which appears to be a signal of the awareness for interventionalists. The most recent meta-analysis of Lipinski MJ et al. (2016) [1] demonstrated that patients who received a BVS were at a higher risk of myocardial infarction (MI) (odds ratio (OR): 2.06, 95% CI: 1.31 to 3.22, p = 0.002) and definite/probable ST (OR: 2.06, 95% CI: 1.07 to 3.98, p = 0.03) compared with patients who received drug-eluting stents (DES) amid the fact that a target lesion failure (TLF) rate of BVS is recognized as "acceptable" in real-world population underscoring the importance of the adequate lesion selection and preparation with the post-implantation optimization. Moreover, the utilized statistical approaches and drawn conclusions raise the certain criticism even within the author-mentioned limitations. A similar situation is revealed in another review of the most recent trials from Cassese S et al. (2015) [2]. Patients treated with BVS had a higher risk of definite or probable ST than those treated with a metallic DES (29/2309 vs 7/ 1382; OR 1.99, 95% CI: 1.00–3.98, p = 0.05), with the highest risk between 1 and 30 days after implantation (3.11, 1.24–7.82, p = 0.02) [2].

We have extensively statistically analyzed both meta-analyses of Lipinski MJ, et al. (2016) [1], and Cassese S et al. (2015) [2] (see Table 1) with 13 trials and 7,177 patients attempting to shed a light on safety outcomes. Importantly, definite or probable ST was significantly increased after placement of a BVS compared with DES (27/1948 vs 15/2150; OR: 2.06, 95% CI: 1.07 to 3.98; p = 0.03) with a

E-mail address: drkharlamov@icloud.com.

trend toward an increase in definite ST (OR: 1.91, 95% CI: 0.82 to 4.46: p = 0.13) and ST at 1 month (OR: 2.02, 95% CI: 0.69 to 5.93; p =0.20) [1]. However, in case of definite or probable ST if estimate separately randomized clinical trials (two CRT: ABSORB II, and EVERBIO II) vs non-RCT (7 studies) p value was insignificant in both cases (0.17 vs 0.07 respectively) above the margin of significance (p > 0.05) which was equal to 25/1948 patients (a 1.28% of BVS) vs 15/2150 (a 0.69% of DES). Actually, it means that we need at least 1,744-1,948 patients (mostly non-randomized trials) [1], and 2,309 patients (randomized trials) [2] as a sample size to achieve statistical power evaluating the input of BVS to the ST burden. The recent smaller meta-analysis of Stone G, et al (2016) [3] documented non-significant increases in peri-procedural myocardial infarction and device thrombosis with BVS (RR 2.09, 0.92-4.75, p = 0.08) which is relevant to the previous findings, but the sample size achieved 2,161 patients that was below the necessary threshold to get statistical power. Moreover, in case of each clinical trial there was no significance in rates of neither definite nor probable ST which brings us to the conclusion that we face a kind of the unintentional bias.

We consider a phenomenon of any unintentional bias mostly from the point of view of the 'positive' trials (usually in favor of a new treatment or against a well-established one) that are more likely to be printed. In our case we tackle the series of the 'negative' results of ST (on a small number of trials) with obvious asymmetry on Funnel plot (see Fig. 1; right top plot) if compare for instance with those of myocardial infarction (left top plot which is mostly symmetrical for both metaanalyses, but asymmetrical for each of them) affirming the specific type of the unintentional bias when the whole meta-analysis was built on the matrix of insignificant results whereas a potential of the so called small study effects. Few trials such as ABSORB EXTEND and a study of Mattesini et al. could be excluded from meta-analysis [1] merely because p value and some data are not available which makes infeasible to properly evaluate this information. It looks be honest as an attempt of industry to depreciation of the findings which is disserving the manufacturer due to misleading lack of data from DES in order to ultimately judge the phenomenon. Importantly, all the ST findings in favor of either DES or BVS were not supported by the statistical tests (p value between groups was in 100% cases above 0.05) with the absence of any proofs of the BVS inferiority if compare with DES in the previous pre-clinical and

These 53 cases (a rate of 1.37%) of ST in BVS patients in 13 trials with 3,844 patients (vs a 0.67% rate for 3,305 DES patients in meta-analyses [1-4] and up to a 1.6% incidence in general population of patients [5-9] with the second-generation DES placement) require the special examination to evaluate details of the histological and clinical manifestation of

^{*} Corresponding author at: De Haar Research Foundation, Handelsplein 15, Rotterdam 3071 PR, The Netherlands.

Correspondence 207

Table 1Odds ratio and p *value* of multiple comparisons of the clinical outcomes for BVS and DES.

ABSORE HIR (KT. 2017-10) ABSORE Bill (KT. 2017-	rial (years), doi	BVS	DES	ACM	CVD	MACE	MI	TLR	TVR	DST or PST	DST	AST or SAST	TLF
ABSONE HIRC, 2011-1-10 164 408 408 408 408 133 1733 299 136 608 526				Ме	ta-analysis of	Lipinski MJ, e	t al (2016)	•	•	•			
2915 10.1016/S0140- 292	RSORR II (RCT 2011_											2.51	
# 1898 4.189 4.189 1.253 1.71.33 2.199 1.32.2 6.858 5.2613		329	164	7	7		1			1		(0.12,	NP
Part												52.61)	
ABSORB EXTEND (2010-2015). 812 812 812 NE 0037, 0.067, 0.11.5, 0.063, NE 0.0424 (E) (1017-0.015). 812 812 812 NE 0.037, 0.067, 0.15.5, 4.5.6) 1.45.9	0750(14)01435-0			P = 0.33					P = 0.15		P = 1.00	P = 1.00	
1.6244/[E]VIOI122243													
10.4244/EJIV10II2A243 BVS-EXAMINATION (2012-2015), 290 290 NE 3.14)	BSORB EXTEND (2010–2015),	812	812	NE					NE		NE	NE	NP
## PROPRIATION (2012-2015). ##	10.4244/EIJV10I12A243				,								
## SVE-EXMINATION (2012-2015). 10.1016/j.jcin.2014.10.005 ## 200 ##						P = NA							
10.1016/j.jcin.2014.10.005	VS EVAMINATION (2012, 2015)												
P=0.53		290	290	NE	7	NE	1		NE	1	1		NP
No.	10.1016/j.jcin.2014.10.005												
BNS-RAL (2012-2015), 10.1016/j.jamj.card.2015.05.049 122											1	P = NA	
1.01016/j.amjcard.2015.05.049 1.12													
EVERBIO II (RCT, 2012-2015), 78		122	441	7			1	2.45)	2.09)	7.42)		NE	NP
EVERBO II (RCT, 2012-2015), 10.1016/j.j.acc.2014.12.017			-711	7	1								
EVERBIOI (IRCT, 2012-2015), 10.1016/j.j.acc.2014.12.017 78											P = 0.39		
10.1016/j.jacc.2014.12.017 78	EVERDIO II / DCT 2012 2015												
10.1016 jajacc.2014.12017 154.27 20.20 20.25 20.20 20.56 20.49 20.50 20.56 20.49 20.20		78	160	7						1	NF.	NF.	NP
PRAGUE-19 (2012-2014), 40 57 (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.06, (0.06, (0.06, (0.06, (0.06, (0.07, (v.1016/J.Jacc.2014.12.017										ļ		
PRAGUE-19 (2012-2014), 10.1093/eurheartijcht545 40 57													
10.1093/eurhearti/ehts45												4.37	
10.1093/eurhearty/eht545		40	57	7	7							(0.17,	NF
Section Costopoulos et al. (2007-2015), 10.1002/cccd.25569	0.1093/eurheartj/eht545	10	<i>3,</i>	7	7	-	7				1	109.97)	'''
Section Costopoulos et al. (2007—2015), 10.1002/ccd.25569 92 4.13 8.20 1.63 NE 2.53 1.99 NE NE NE NE NE NE NE						P > 0.67	P > 0.67		P > 0.67	P > 0.67	P > 0.67	P > 0.67	
2015), 10.1002/ccd.25569 92 92 4.13) 8.20) 1.63) NE 2.53) 1.99) NE NE NE NE NE NE NE NE NE N								0.59	0.48				
A		92	02				NF			NF	NF	NF	NF
Cori et al. (2012-2014), 150 103 2.74 2.74 2.75 (0.07, (0.0		32	32	4.13)	8.20)	1.63)	NL	2.53)	1.99)	NL	INL	INL	141
10.00 10.0				P = 0.15	P = 0.15	P = 0.19		P = 0.47	P = 0.31				
10.1016/j.jcin.2014.12.244, 150	ori et al. (2012, 2014)			0.45	0.45	0.65	1.03	1.03	1.03	0.91	1.03	0.91	
10.4244 E JV9 9A176		150	102	(0.07,	(0.07,	(0.31,	(0.28,	(0.17,	(0.17,	(0.20,	(0.17,	(0.20,	NP
Mattesini et al. (2012-2014), 10.1016/j.jcin.2014.01.165 31 NE NE NE (0.22, (0.11, (0.04, (0.12, 10.179) (0.12, 10.179) (0.12, 10.179) (0.12, 10.179) (0.11, (0.04, (0.12, 10.179) (0.12, 10.179) (0.11, (0.04, 10.114) (0.12, 10.179) (0.11, (0.04, 10.114) (0.12, 10.179) (0.11, (0.04, 10.114) (0.12, 10.179) (0.11, (0.04, 10.114) (0.12, 10.179) (0.11, (0.04, 10.114) (0.12, 10.179) (0.11, (0.04, 10.114) (0.12, 10.179) (0.114, 10.114) (0.114) (0.12, 10.114) (0.114, 10.114) (0.12, 10.114)		150	103	2.74)	2.74)	1.37)	3.75)	6.28)	6.28)	4.17)	6.28)	4.17)	INP
Mattesini et al. (2012–2014), 10.1016/j.jcin.2014.01.165 35 31 NE NE (0.22, 101.79) 69.72) 4.95) 6.64) NE	10.4244/EIJV9I9A1/6			P > 0.66	P > 0.9	P = 0.26	P > 0.63	P > 0.9	P > 0.9	P = 1.00	P > 0.77	P = 1.00	
10.1016/j.jcin.2014.01.165 35 31 NE NE 101.79) P = NA 101.79) P = NA P = NA NE NE 101.79) P = NA P = NA NE NE NE 101.79) P = NA P = NA NE NE NE NE NE NE NE NE NE						4.70	2.74	0.43	0.88				
10.1016/j.jcin.2014.01.165 10.40 10.5 10.60 10.5 10.60 10.5 10.60 10.5 10.60 10.5 10.60 10.5 10.60 10.5 10.60 10.5 10.60 10.5 10.60 10.5 10.60 10.5 10.60 10.5 10.60 10.5 10.60 10.5 10.60 10.50 10.60 10.50 10.60 10.50 10.60 10.50 10.60 10.50 10.60 10.50 10.60 10.50 10.60 10.50 10.60 10.50 10.60 10.50 10.60 10.50 10.60 10.50 10.60 10		6-7		NIE	NE	(0.22,	(0.11,	(0.04,		NE NE	NIE	NIE	NP
TOTAL for meta-analysis of Lipinski MJ. et al (2016) 1948 2150 0.40 (0.15, (0.42, (0.66, (1.31, (0.59, (0.48, (1.07, (0.82, (0.66 (1.31, (0.59, (0.48, (1.07, (0.82, (0.66 (1.31, (0.59, (0.48, (1.07, (0.82, (0.66 (1.31, (0.59, (0.48, (1.07, (0.82, (0.66 (1.31, (0.59, (0.48, (1.07, (0.82, (0.66 (1.31, (0.59, (0.48, (1.07, (0.82, (0.66 (1.31, (0.59, (0.48, (1.07, (0.82, (0.66 (1.31, (0.59, (0.48, (1.07, (0.82, (0.66 (1.31, (0.59, (0.48, (0.67, (0.59, (0.48, (0.67, (0.82, (0.66 (1.31, (0.59, (0.48, (0.67, (0.59, (0.48, (0.67, (0.59, (0.48, (0.67, (0.59, (0.82, (0.82, (0.82, (0.82, (0.82, (0.82, (0.82, (0.84, (0.67, (0.82, (0.82, (0.82, (0.84, (0.67, (0.82, (0.84, (0.67, (0.82, (0.84, (0.67, (0.82, (0.84, (0.67, (0.82, (0.84, (0.67, (0.82, (0.84, (0.67, (0.82, (0.84, (0.67, (0.82, (0.84, (0.67, (0.84, (0.67, (0.82, (0.84, (0.67, (0.82, (0.84, (0.67, (0.82, (0.84, (0.67, (0.82, (0.84, (0.67, (0.82, (0.84, (0.67, (0.84, (0.67, (0.82, (0.84, (0.67, (0.84, (0		35	31	NE	NE	101.79)	69.72)	4.95)	6.64)	NE	NE	NE	INI
TOTAL for meta-analysis of Lipinski MJ, et al (2016) 1948 2150 (0.15, 1.06) 1.58) 1.166 3.22) 1.28) 1.29 3.98) 4.46) 5.93 P = 0.05 P = 0.05 P = 0.05 P = 0.02 P = 0.07 P = 0.29 P = 0.03 Meta-analysis of Cassese, et al (2015)-fixed-effects odds ratio ABSORB II (RCT, 2011-2015), 10.1016/S0140-6736(14)61455-0 EVERBIO II (RCT, 2012-2015), 10.1016/j.jiacc.2014.12.017 ABSORB III (RCT, 2012-2015), 10.016/j.jiacc.2014.12.017 ABSORB III (RCT, 2012-2015), 1322 BEVERBIO II (RCT, 2012-2015), 1323 BEVERBIO II (RCT, 2012-2015), 1324						P = NA	P = NA	P = NA	P = NA				
Lipinski MJ, et al (2016) 1948 2150				0.40	0.81	0.87	2.06	0.87	0.77	2.06	1.91	2.02	
1.06		1040	2150	(0.15,	(0.42,	(0.66,	(1.31,	(0.59,	(0.48,	(1.07,	(0.82,	(0.69,	NP
P = 0.06 P = 0.54 P = 0.35 P = 0.02 P = 0.47 P = 0.29 P = 0.03 P = 0.13 P = 0.25		1948	2150	1.06)	1.58)	1.16)	3.22)	1.28)	1.25)	3.98)	4.46)	5.93)	NP
ABSORB II (RCT, 2011-2015), 10.1016/S0140-6736(14)61455-0				P = 0.06	P = 0.54	P = 0.35	P = 0.002	P = 0.47	P = 0.29	P = 0.03	P = 0.13	P = 0.20	
ABSORB II (RCT, 2011–2015), 10.1016/S0140-6736(14)61455-0 329 164 (0.00, 3.15)			M	eta-analysis oj	f Cassese,et al	(2015)–fixed-	effects odds rat	io					
10.1016/S0140- 10.101	DCODD II (DCT 2011 2015)			0.05			2.71	0.64		4.49			1.5
3.15 7.56 3.12 49.92 P = 0.55	10.1016/S0140-	220	164	(0.00,	NID	NID	(0.97,	(0.13,	NID	(0.04,	NID	NID	(0.6
P = 0.33		329	164	3.15)	NP	NP	7.56)		NP		NP	NP	3.92
EVERBIO II (RCT, 2012-2015), 10.1016/j.jacc.2014.12.017				P = 0.33			P = 0.06	P = 0.69		P = 0.55			P = 0
EVERBIO II (RCT, 2012-2015), 10.1016/j.jacc.2014.12.017				0.37			1.03	0.72			1		0.8
10.1016/j.jacc.2014.12.017 78 160 2.68) P = 0.62 16.55) 1.87) P = 1.00 P = 0.50 NP NP NP NP NP NP NP NP NP N	, ,												(0.3
P = 0.62		78	160		NP	NP			NP	NE	NP	NP	2.09
ABSORB III (RCT, 2012-2015), 1322 686 (0.82, NP NP NP (0.84, (0.67, NP (0.82, 1.79) 1.95) NP NP NP (0.82, 4.34) NP													P = 0.
ABSORB III (RCT, 2012–2015), 1322 686 (0.82, 5.81)										1.89			1.2
10.1056/NEJMoa1509038	BSORB III (RCT, 2012-2015),						(0.84,	(0.67,		(0.82,			(0.0)
P = 0.12 P = 0.28 P = 0.61 P = 0.13 0.13 1.25 1.00 7.21 ABSORB China (2013–2015), 241 239 (0.02, NP NP (0.33, (0.34, NP (0.14, NP NP NP (0.14, NP	0.1056/NFIMoa1509038	1322	686	7	NP	NP	1		NP		NP	NP	1.85
ABSORB China (2013–2015), 241 239 (0.02, NP NP (0.33, (0.34, NP (0.14, NP NP NP (0.14, NP													P = 0
ABSORB China (2013–2015), 241 239 (0.02, NP NP (0.33, (0.34, NP (0.14, NP												† 	0.7
	BSORB China (2013–2015).			1.0						7	ĺ		(0.3
10.1016/1.1dcc.2015.09.054 (0.77) 4.661 (2.88) 363.231	10.1016/j.jacc.2015.09.054	241	239	0.77)	NP	NP	4.66)	2.88)	NP	363.23)	NP	NP	2.03
P = 0.03 P = 1.00 P = 0.99 P = 1.00											ĺ		P = 0
4.51 1.48 0.68 1.02	ABSORB Japan (2013–2015), 10.1093/eurheartj/ehv435												1.1
ARSORR Janan (2013–2015) (0.24 (0.20 (0.18											ĺ		(0.3
1 266 1 134 1 1 NP 1		266	134	7	NP	NP	1		NP		NP	NP	3.19
P = 0.55 $P = 0.76$ $P = 0.55$ $P = 1.00$											ĺ		P = 0.
7.47 1.98 7.47				. 0.00								<u> </u>	7.4
TROFI II/RCT 2014-2015) (0.15 (0.20 (0.15	ROFLU(RCT 2014_2015)										ĺ		(0.1
	TROFI II(RCT, 2014–2015), 10.1093/eurheartj/ehv500	95	96	NE	NP	NP			NP		NP	NP	376.3
10.1093/eui ileat tyjenv300 376.33 19.29 376.33 P > 0.05											ĺ		P > 0.
r > 0.03 r > 0.03 r > 0.03	, 2,				1	1	1 - 0.03	1 - 0.05					1 - 0.
				0.05			1 20	0.07		1.00			4.0
0.95 1.36 0.97 1.99													
	OTAL for meta-analysis of	2331	1479	(0.45,	NP	NP	(0.98,	(0.66,	NP	(1.00,	NP	NP	(0.90 1.60

The odds ratio below 1 is in favor of BVS; NE - not estimable, NA - not available, NP - not provided. Total data presented with p value estimated by the test for overall effect (Z). The purple cells indicate the clinical outcomes which wouldn't be trusted due to p value below 0.05 (statistically insignificant). Cells with statistically significant results marked with green. Abbreviations: PX - not bioresorbable vascular scaffold, PX - not definite stent, PX - not acute stent thrombosis, PX - not acute stent thrombo

the phenomenon in order to ultimately judge a contribution of BVS to the risk of (sub-)acute and/or late scaffold-related thrombosis. Meanwhile, Lipinski [1] underlines that among patients after BVS implantation in which acute and subacute ST was reported, the risk of acute ST

was 0.27% and the risk of subacute ST was 0.57%. Early discontinuation of dual antiplatelet therapy was associated only with 22% of ST. Thus, the scaffold thrombosis rates were similar to the anticipated incidences typically reported in contemporary all-comers registries and trials of the

Download English Version:

https://daneshyari.com/en/article/5965240

Download Persian Version:

https://daneshyari.com/article/5965240

<u>Daneshyari.com</u>