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Abstract

A mathematical model for the quasi-steady diffusion-limited evaporation of a thin axisymmetric sessile droplet of liquid with a pinned contact
line is formulated and solved. The model generalises the theoretical model proposed by Deegan et al. [Contact line deposits in an evaporating drop,
Phys. Rev. E, 62 (2000) 756-765] to include the effect of evaporative cooling on the saturation concentration of vapour at the free surface of the
droplet, and the dependence of the coefficient of diffusion of vapour in the atmosphere on the atmospheric pressure. The predictions of the model are
in good qualitative, and in some cases also quantitative, agreement with recent experimental results. In particular, they capture the experimentally
observed dependence of the total evaporation rate on the thermal conductivities of the liquid and the substrate, and on the atmospheric pressure.
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1. Introduction

The evaporation of liquid droplets is of fundamental impor-
tance in a huge variety of practical situations ranging from
technological applications such as ink-jet printing, spray cooling
and various coating processes, to a variety of biological and geo-
physical contexts. As a result, droplet evaporation has been the
subject of considerable theoretical and experimental research in
recent years. Significant recent papers include those by Deegan
[1], Deegan et al. [2], Hu and Larson [3-5], Popov [6], Poulard et
al. [7], Sultan et al. [8], Shahidzadeh-Bonn et al. [9], and Girard
et al. [10].

Physical experiments conducted recently by David et al.
[11] using a variety of liquids and substrates show that the
thermal conductivities of the liquid and the substrate, and the
atmospheric pressure, can have a significant effect on the total
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evaporation rate. Neither of these effects is captured by the
widely used pioneering theoretical model proposed by Deegan
et al. [2] (hereafter referred to simply as “the Deegan model” for
brevity).

In this paper, a mathematical model for the quasi-steady
diffusion-limited evaporation of a thin axisymmetric sessile
droplet of liquid with a pinned contact line is formulated and
solved. This model generalises the Deegan model to include the
effect of evaporative cooling on the saturation concentration of
vapour at the free surface of the droplet, and the dependence of
the coefficient of diffusion of vapour in the atmosphere on the
atmospheric pressure. For simplicity, the present initial model is,
however, restricted to the special case of thin droplets with small
contact angles. The results presented here show that the predic-
tions of the model are in good qualitative, and in some cases also
quantitative, agreement with the experimental results. In partic-
ular, they capture the experimentally observed dependence of
the total evaporation rate on the thermal conductivities of the
liquid and the substrate, and on the atmospheric pressure.

The present paper describes some aspects of the work pre-
sented at the 3rd International Workshop on Bubble and Drop


mailto:s.k.wilson@strath.ac.uk
mailto:b.r.duffy@strath.ac.uk
mailto:k.sefiane@ed.ac.uk
dx.doi.org/10.1016/j.colsurfa.2007.09.031

G.J. Dunn et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 323 (2008) 50-55 51

z Temperature T, Pressure ps

A Atmosphere

Mass Flux J

Droplet

/////////////////R///=

Substrate

_he AT

Temperature T,, Pressure ps

Eds

Fig. 1. Geometry of the problem.

Interfaces held on 25-28 March 2007 in Granada, Spain. A pre-
liminary account of part of this work was given by Dunn et al.
[12].

2. The mathematical model

Consider the quasi-steady diffusion-limited evaporation of a
thin axisymmetric sessile droplet of liquid with constant den-
sity p, surface tension o, and thermal conductivity k on a thin
horizontal substrate of constant thickness #° with constant ther-
mal conductivity k°. Referred to cylindrical polar coordinates
(r, ¢, z) with origin on the substrate at the centre of the droplet
and with the z axis vertically upwards, the shape of the free sur-
face of the droplet is denoted by z = h(r, ), the upper surface
of the substrate by z = 0, and the lower surface of the substrate
by z = —h?®, as shown in Fig. 1.

The contact lines of evaporating droplets are typically pinned
by surface roughness (or other) effects during the first stage of
their evaporation, but can de-pin prior to complete evaporation.
All of the experimental results for temperature and evapora-
tion rate reported by David et al. [11] are for droplets in this
first (pinned) stage, and so in the present model we assume that
the droplet radius R remains constant. We also assume that the
droplet is sufficiently small that surface tension effects dominate
gravitational effects, and that the droplet is sufficiently thin (in
particular, that the contact angle 6 = 6(t) is sufficiently small)
that it has the simple quasi-static parabolic shape
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with volume V = V() given by
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While the former assumption is well justified for the experiments
of David et al. [11], the latter assumption is more questionable
(see the discussion about this assumption in Section 4). The total
evaporation rate is given by
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where J = J(r, t) (>0) is the local evaporative mass flux from
the droplet.

The atmosphere surrounding the droplet and the substrate is
assumed to be at constant atmospheric temperature 7, and pres-
sure p,. Since both the droplet and the substrate are thin, their
temperatures, denoted by T' = T'(r, z, t) and T® = T5(r, z, t), sat-
isfy
*T PTs
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The mass flux from the droplet satisfies the local energy
balance

T
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on z = h for r < R, where L is the latent heat of vaporisation.
Hence, assuming that both the temperature and the heat flux
are continuous between the droplet and the wetted part of the
substrate, and that the lower surface of the substrate is at the
atmospheric temperature T,, we have
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showing clearly the evaporative cooling of both the droplet and
the substrate.

Assuming that transport of vapour in the atmosphere is
dominated by diffusion (see, for example, Popov [6]), the con-
centration of vapour in the atmosphere above the droplet and the
substrate, denoted by ¢ = c(r, z, ), satisfies Laplace’s equation,

VZe =0. @)

Since the droplet is thin, Eq. (7) holds in the half-space z > 0,
and the boundary conditions for ¢ on the free surface of the
droplet may be imposed on z = 0 rather than on z = h.

At the free surface of the droplet, we assume that the atmo-
sphere is saturated with vapour so that ¢ = cg(T), where the
saturation concentration csy; = cs¢(7") is assumed to be a lin-
early increasing function of temperature given by
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on z = 0 (rather than on z = h) for r < R. On the dry part of the
substrate there is no mass flux, i.e.
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on z = 0 for r > R, and far from the droplet the concentration
of vapour approaches its ambient value, i.e.

¢ — Heg(Ty) (10)
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as (r2 + z2) 2, 00, where H is the relative saturation of the
atmosphere far from the droplet (which may be zero or non-
zero). Once c is known the mass flux from the droplet is given
by
ac
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