[12] DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44:837-45.
[13] Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 2010;21:128-38.
[14] Pencina MJ, D'Agostino Sr RB, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 2011;30:11-21.
[15] Hosmer DW, Hosmer T, Le Cessie S, Lemeshow S. A comparison of goodness-offit tests for the logistic regression model. Stat Med 1997;16:965-80.

A meta-analysis pooling survival curves in randomized controlled trials and propensity-score matched studies of endovascular versus open

Hisato Takagi *, Takuya Umemoto and for the ALICE (All-Literature Investigation of Cardiovascular Evidence) Group

Department of Cardiovascular Surgery, Shizuoka Medical Center, Shizuoka, Japan

ARTICLE INFO

Article history:

Received 22 January 2014
Received in revised form 6 April 2014
Accepted 9 April 2014
Available online 24 April 2014

Keywords:

Endovascular aneurysm repair
Meta-analysis
Propensity-score analysis
Randomized controlled trial
Survival curve

Regarding mid-to-long-term survival following elective endovascular aneurysm repair (EVAR) versus open surgical repair (OSR) for non-ruptured abdominal aortic aneurysm (AAA), authors of recent meta-analyses combined odds (ORs) [1] or risk ratios (RRs) [2,3$]$ for mortality. The most appropriate way of summarizing time-to-event (survival) data, however, is to use methods of survival analysis and express the intervention effect as a hazard ratio (HR) [4]. When comparing interventions in a study or meta-analysis, a simplifying assumption is often made that the HR is constant across the follow-up period, even though hazards themselves may vary continuously, which is known as the proportional hazards assumption. In studies of EVAR versus OSR for AAA, however, survival curves often cross, i.e. EVAR may yield better survival in the beginning of the study, but this effect may be reversed after some time. Under the proportional hazards assumption, crossing of the survival curves is impossible [5]. If the proportional hazards assumption fails to hold for the treatment, the HR cannot be interpreted as a relative risk. According to the method by Pereira et al. [6], we performed a metaanalysis pooling survival curves themselves (not ORs, RRs, and HRs for mortality) of EVAR and OSR for AAA in randomized controlled trials (RCTs) and propensity-score matched studies.

[^0]Suppose the numbers at risk, $n_{1}, n_{2, \ldots} \ldots, n_{p}$ are given on the survival curve at each of p time-points $t_{1}, t_{2}, \ldots, \ldots, t_{p}$. Survival rates were read off the curves at $t_{1}, t_{2}, \ldots, \ldots, t_{p}$ and denoted by $s_{1}, s_{2}, \ldots, s_{p}$. Let $t_{0}=0, s_{0}=1, n_{0}=$ randomized or matched number. Following the actuarial approach, in which censoring is assumed to be constant within each time interval, but not necessarily across intervals
$s_{j}=s_{i}\left(1-d_{i, j} /\left[n_{i}-c_{i, j} / 2\right]\right)$
$n_{j}=n_{i}-d_{i, j}-c_{i, j}$
where $d_{i, j}=$ number of deaths during the interval $\left[t_{i}, t_{j}\right]$ and c_{i}, ${ }_{j}=$ censored number during the interval $\left[t_{i}, t_{j}\right]$. Rearranging the Eqs. (1) and (2) gives

$$
\begin{gathered}
d_{i, j}=\left(n_{i}+n_{j}\right)\left(s_{i}-s_{j}\right) /\left(s_{i}+s_{j}\right) \\
c_{i, j}=2\left(n_{i} s_{j}-n_{j} s_{i}\right) /\left(s_{i}+s_{j}\right)
\end{gathered}
$$

Monthly hazard rates from single series of EVAR or OSR were combined in random-effects modeling to yield a pooled estimate of survival for each repair and each month of follow-up [6]. The product of successive monthly pooled estimates of survival then yielded a pooled measure of cumulative survival for each type of repair. We constructed a strategy to combine survival curve because different grids of time intervals had been used in the reviewed studies [6].

First, for each month k of follow-up, we redistributed, in equal quantities ($d_{k-1, k}$ and $c_{k-1, k}$) at 1-month intervals $\left[t_{k-1}, t_{k}\right]$, the numbers of deaths $\left(d_{i, j}\right)$ and censored $\left(c_{i, j}\right)$ at intervals greater than 1 month $\left[t_{i}, t_{j}\right]$.

Second, an interval survival rate, $s_{k-1, k}$, was determined as follows:

$$
s_{k-1, k}=1-d_{k-1, k} /\left(n_{k-1}-c_{k-1, k} / 2\right) .
$$

The variance of $s_{k-1, k}, \operatorname{var}\left(s_{k-1, k}\right)$, was obtained as the following approximation:

$$
\operatorname{var}\left(s_{k-1, k}\right)=\left[s_{k-1, k}\right]^{2} d_{k-1, k} /\left(\left[n_{k-1}-c_{k-1, k} / 2\right]\left[n_{k-1}-c_{k-1, k} / 2-d_{k-1, k}\right]\right)
$$

Third, to obtain a pooled interval survival rate, $S_{k-1, k}$, and its variance, $\operatorname{var}\left(S_{k-1, k}\right)$; study specific interval survival rates $\left(s_{k-1, k}\right)$ were combined using inverse variance-weighted averages in the

Table 1
Trial characteristics and patient profiles.

Study	Design	Follow-up (year)	Patient (n)	Age (year)	Men (\%)	Diabetes (\%)	$\begin{array}{ll} \hline \text { es } & \begin{array}{l} \text { Tobacco } \\ \text { use (\%) } \end{array} \end{array}$	Hypertension (\%)	Hyperl (\%)	ipidemia	Carotid disease (\%)	Cardiac disease (\%)	Renal disease (\%)	Pulmonary disease (\%)
Included study														
ACE 2011 [E1]	RCT	4	299	69.4	99.0	13.0	49.2	64.9	67.2		8.0	$38.1{ }^{\text {a }}$	$12.0{ }^{\text {b }}$	23.7
DREAM 2010 [E2]	RCT	7	351	70.1	91.7	10.0	59.6	56.4	49.8		14.9	43.8	8.0	23.0
EVAR 12010 [E3]	RCT	8	1252	74.1	90.7	10.4	$21.6{ }^{\text {c }}$	N/A	N/A		N/A	42.3	N/A	N/A
OVER 2009 [E4]	RCT	2	881	70.0	99.4	22.7	$41.2^{\text {c }}$	76.8	N/A		N/A	$40.7{ }^{\text {a }}$	N/A	$29.4{ }^{\text {d }}$
Egorova 2011 [E5]	PSM	6	84,640	$75.2^{\text {e }}$	$77.6{ }^{\text {e }}$	$12.4{ }^{\text {e }}$	N/A	$64.9{ }^{\text {e }}$	$27.9{ }^{\text {e }}$		N/A	$48.5{ }^{\text {ae }}$	$4.7{ }^{\text {be }}$	$37.5^{\text {e }}$
Lee 2013 [E6]	PSM	11	440	72.58	82.5	11.1	$23.0{ }^{\text {c }}$	55.2	63.2		$10.0{ }^{\text {f }}$	$30.2^{\text {g }}$	$1.4{ }^{\text {h }}$	18.4
Mark 2013 [E7]	PSM	5	8966	75-84, 42.5\%	\% 84.5	14.5	N/A	N/A	N/A		N/A	$43^{\text {a }}$	$5^{\text {b }}$	$30^{\text {d }}$
Study		Design	Follow-up	(year)	Patient		Publication			Remark				
Major excluded study														
Schermerhorn 2011		PSM	1		45,660		J Am Coll Surg 2011;212:349-55			All patients (Medicare 2001-2004) included in Egorova 2011 (Medicare 1995-2006)				
Giles 2011		PSM	6		45,652		J Vasc Surg 2011;53:6-12,13.e1			All patients (Medicare 2001-2004) included in Egorova 2011 (Medicare 1995-2006)				
Schermerhorn 2008		PSM	5		45,660		N Engl J Med 2008;358:464-74			All patients (Medicare 2001-2004) included in Egorova 2011 (Medicare 1995-2006)				

ACE: Anevrysme de l'aorte abdominale: Chirurgie versus Endoprothese; DREAM: Dutch Randomized Endovascular Aneurysm Repair; EVAR: United Kingdom Endovascular Aneurysm Repair; OVER: N/A: not available; Open Versus Endovascular Repair; PSM: propensity-score matching; RCT: randomized controlled trial.
${ }^{\text {a }}$ Coronary disease.
${ }^{\mathrm{b}}$ Renal insufficiency.
${ }^{\text {c }}$ Current smoker.
${ }^{\text {d }}$ Chronic obstructive pulmonary disease.
${ }^{\text {e }}$ Data in original 322,892 patients before propensity-score matching.
${ }^{\mathrm{f}}$ Surgery on carotid arteries.
${ }^{\mathrm{g}}$ Myocardial infarction.
${ }^{h}$ Dialysis.
random-effects model using Comprehensive Meta-Analysis version 2 (Biostat, Englewood, NJ).

Finally, the product of pooled interval survival rates $\left(S_{k-1, k}\right)$ yielded the pooled cumulative survival rate at month k, S_{k}, as follows:

The variance of S_{k}, $\operatorname{var}\left(S_{k}\right)$, was calculated as the following formula:
$\operatorname{var}\left(S_{k}\right)=\operatorname{var}\left(S_{k-1}\right) \operatorname{var}\left(S_{k-1, k}\right)+\operatorname{var}\left(S_{k-1}\right)\left[S_{k-1, k}\right]^{2}+\operatorname{var}\left(S_{k-1, k}\right)\left[S_{k-1}\right]^{2}$.
The 95% confidence interval (CI) of S_{k} was obtained as follows:
$S_{k}=S_{0,1} S_{1,2} \ldots S_{k-1, k}$.

Fig. 1. Pooled survival curves of elective endovascular aneurysm repair (EVAR) (blue) and open surgical repair (OSR) (red) for non-ruptured abdominal aortic aneurysm.

https://daneshyari.com/en/article/5971672

Download Persian Version:

https://daneshyari.com/article/5971672

Daneshyari.com

[^0]: it All authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.
 动论 Acknowledgement of grant support: None.
 \star Any potential conflicts of interest, including related consultancies, shareholdings and funding grants: None.

 * Corresponding author at: Department of Cardiovascular Surgery, Shizuoka Medical Center, 762-1 Nagasawa, Shimizu-cho, Sunto-gun, Shizuoka 411-8611, Japan. Tel.: + 81 559752000.

 E-mail address: kfgth973@ybb.ne.jp (H. Takagi).

