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A single sagging Plateau border
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Abstract

The loading of foams with liquid weight, contributed primarily by the Plateau borders, results in an external force which may often be important
to structure and drainage, especially in foams of a higher liquid content; loading induces deformations in structures. A Plateau border in a three-
dimensional foam is supported by three films, which are assumed to sag under loading, initially with linear elasticity in these numerical simulations.
The weight of a Plateau border is allowed to vary along its length, in accordance with the foam drainage equation for a single channel (balancing
gravity and capillarity for a given channel size and orientation). The surface area of the deformed structure is subsequently minimized in the Surface
Evolver, and it is found that only for sufficiently dry borders, the films have linear elasticity. For wet foams, the true distortion due to loading is
larger than the linear model predicts; an iterative approach, based on the solution of the drainage equation and a direct application of gravitational
forces in the Surface Evolver, is developed for wetter Plateau borders. The implications for forced-drainage experiments and continuum-level
drainage models are discussed.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A stationary liquid foam is usually treated as a collection of
polyhedral gas bubbles separated by a finite amount of liquid,
which is contained predominantly in the Plateau border channels
that would form the edges of surfaces in a corresponding per-
fectly dry polyhedral structure [1,2]. The gravitational weight of
these channels is neglected in standard theories, except those in
which it is required as a driving force for the drainage of liquid
through a foam [3–5]. This is not, of course, a strictly accurate
picture; the liquid has weight which acts on the films (faces of
the bubble polyhedra), thereby affecting the foam structure.

Some work has been done by Weaire et al. [6] on a uniformly
loaded, two-dimensional honeycomb foam. The authors found,
as a result of their simulations, that a loaded foam has slightly
different structure than is assumed by the standard theories. For
instance, with an external load applied, there can exist gas pres-
sure gradients in a monodisperse foam (in 2D, this is normally
only possible as a result of polydispersity). In addition, the sym-
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metry of vertices in the foam could be disturbed by loading,
requiring modifications to existing theories (such as the con-
tinuum foam drainage equation) which use the assumption of
randomly oriented structural elements (e.g. borders).

This work in two dimensions has provided many useful obser-
vations. However, the sagging of real liquid channels is not
caused by the application of a uniform load. Gravity acts ver-
tically, and the component normal to the film is the force that
results in distortion of the regular structure; since the film sur-
face will curve due to the application of an external force, the
load is therefore neither uniform in direction, nor in magnitude.

Real Plateau borders also present a 3D problem, not a 2D
one. The flow through the channels (and thus the channel
cross-sectional area and weight) is determined by the drainage
equation for a single Plateau border. A 2D loaded foam model
does not account for this channel drainage flow rate, nor does
it explicitly acknowledge that it must be uniform along a single
channel. Such factors, affecting the gravitational loading itself,
cause the channel cross-section to distort normal to its length and
by differing amounts along its length. Thus the problem becomes
inherently three-dimensional. It is known that external influ-
ences (e.g. imposed shear) on a foam sample affect its structure
and thereby drainage properties [7]; there is every reason to
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believe that internal loading forces could have similar effect.
To analyse the effect of gravitational loading on 3D foam

structures, this paper takes a single channel as an example. In
the following section we present a model for a single sagging
Plateau border. The model initially uses the assumption of linear
elasticity of the deformations—which is not, of course, a valid
assumption for real foam films. Following the presentation of the
model, we give results of our numerical simulations. We then
test the validity of the linear model in the Surface Evolver. After
that we describe Evolver simulations for non-linear elasticity,
and in the last section we present conclusions.

2. Linear elasticity model

To model the effect of gravitational loading of Plateau bor-
ders (only, as opposed to on vertices) on bubbles in a foam, a
simple model is developed in which the borders are held up by
surface tension (i.e. there are no volume or pressure constraints
on individual bubbles). It is also assumed in the first instance
that the deformations are elastic; that is, there is a continuum
spring constant measuring the force per unit displacement per
undistorted length of the channel.

2.1. Deformation due to loading

In this model, three films which are being distorted by grav-
itational forces belong to a single Plateau border. One film is
assumed vertical, and the other two hang downwards (as pre-
sented in Fig. 1(a)). Of these three films, the upper surface will
show a gain in energy (or surface area) under sag exactly the
same, at leading order, as that gained by the downward-hanging
films. It is the second-order effect which is calculated here.

We define a coordinate system such that an undeformed film is
in thexy plane. Herexmeasures a distance transverse to a Plateau
border, y a distance along it. Moreover z is a distance normal
to the undeformed film (see Fig. 1(b)). For a semi-infinite strip
of film, initially on x ≥ 0 and 0 ≤ y ≤ L, the edge of which is
distorted by a distance εL sin(πy/L) at an angleπ/3 to the plane
of the film, the distorted edge lies along x = (1/2)εL sin(πy/L)
and z = (

√
3/2)εL sin(πy/L) (Note that εdetermines the ampli-

Fig. 1. (a and b) Coordinate system for the derivation of the linear elasticity
model. The orientation assumed is that the upper film is in the vertical plane
with two downward-hanging films coming off it. Coordinates x, y, and z are
defined such that for one of the two downward-hanging films x is along the film,
y along the Plateau border, and z normal to the undistorted film. The coordinate
y is along the border but not necessarily horizontal, since the border can be tilted
such that one vertex lies lower than the other, allowing for drainage along it.
Part (a) of the figure is a projection of part (b) into the xz plane.

tude εL of the distortion. The vertices at the end points of the
Plateau border are assumed to be pinned and the films must
stretch to accommodate the effect of liquid weight). The solu-
tion for the film shape is z = ψ(x, y). As mentioned previously,
we consider an open system with no volume constraints (hence
films are surfaces of zero mean curvature). At leading order
∇2ψ(x, y) = 0, and the boundary condition can be applied along
x = 0 instead of along the true boundary. Then

ψ =
√

3

2
εL exp

(
−πx
L

)
sin

πy

L
. (1)

2.1.1. Area and energy increase due to distortion
An element dx, dy is distorted to dx(1, 0, ∂ψ/∂x) and

dy(0, 1, ∂ψ/∂y), the area of which, S, is found by the magnitude
of the cross product vector to be

dS = dx dy
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Integrating this over the original domain gives

S = Soriginal + 3π

8
ε2L2, (3)

where Soriginal is the area S for the undistorted structure.
There is also an area variation arising from the fact that the

domain has been shifted from x = 0 to x = (1/2)εL sin(πy/L).
This can be obtained by projecting the shift onto the z = 0 plane.
Alternatively, if the distorted film belongs to a Plateau border
with one film upwards and two hanging diagonally downwards,
the energy loss from the new domain in the two diagonal films (if
the Plateau border is distorted downwards) exactly matches the
energy gain from the vertical film, which stays flat but increases
in surface area. Thus, the total area gain in the two diagonal films
is (3π/4)ε2L2 and the total energy gain is (3π/2)ε2L2σ (where
σ is surface tension).

This all assumes that the half-period of the disturbance is
simply some length L. It would be useful to generalize this to
a length L/n and generalize ε to nε (to keep the disturbance
amplitude εL the same). As a result, the energy increase for
eachL/n segment is kept the same, and the total energy increase
over all n segments is (3πn/2)ε2L2σ. This energy increase can
be used to estimate an effective spring constant for each mode of
disturbance. Note that this will be a continuum spring constant:
it measures the force per displacement per unit original length
of Plateau border.

There is one subtlety involved with relating displacement to
energy increase: namely that displacement (which we denote X)
varies like sin πny/L along the mode. A displacement amplitude
εL implies a root mean square displacementXrms = εL/

√
2. An

rms displacement is an appropriate measure, because energy is
assumed proportional to the square of displacement which varies
spatially like sin2(πny/L) along the mode: the root mean square
averages over this variation. Thus mode energy is 3πnX2

rmsσ
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