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Theoretical modelling of electrokinetic flow in microchannel networks
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a INTEC (UNL-CONICET), Güemes 3450, 3000, Santa Fe, Argentina

b Departamento de Fı́sica, Facultad de Bioquı́mica y Ciencias Biológicas, UNL, El Pozo, 3000, Santa Fe, Argentina

Received 15 May 2006; received in revised form 18 December 2006; accepted 19 December 2006
Available online 3 January 2007

Abstract

This work deals with the description of electrokinetic flow in microfluidic networks involving multiple channels intersections. A generalized
one-dimensional modelling is carried out to predict flow rate and electric current in each branch of the network, as a function of applied electric
potentials and pressure gradients. Mathematical derivations ground on thermodynamic formalisms for electrokinetic phenomena, and takes into
account the characteristics of every channel and circulating fluid in the system. The coefficients that relate driving forces and conjugated flows are
derived for both slit and cylindrical microchannels, with arbitrary values of surface potential and electric double layer thickness. Calculations are
used to rationalize typical operations performed in analytical devices that consist of well-defined microchannel networks. The modelling suggested
also provides an accurate basis to study fundamental aspects of electrokinetic phenomena in microfluidic systems.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Analytical microfluidic devices, as those currently used in
chemical, biological and medical applications, basically consist
of different networks of microchannels that connect chambers
and reservoirs [1–5]. The architecture of these networks may be
more or less complex, involving the basic units drawn schemati-
cally in Fig. 1. In order to manipulate the transport of fluids,
microchannels are generally subjected to pressure gradients,
electric fields, or a combination of the two. Therefore, in view
of technological applications, reliable models are necessary
to describe the coupled flows of matter and electricity devel-
oped in every branch of the network. For this purpose, a sound
understanding of the mechanisms governing electrokinetic phe-
nomena in microfluidic systems is required [12].

Detailed treatments of microchannel networks involve the
modelling of electrokinetic and transport phenomena in the
whole system, considering effects in two and three dimensions,
which demands important computational efforts [7,9,12–14].
Nevertheless, if microchannels are sufficiently slim, flows are
fully developed and two-dimensional effects are present near
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the channel intersections only (Reynolds numbers are normally
lower than 1 in microchannels [15]). Under these circumstances,
one-dimensional modelling applies as a first approximation.
This approach greatly simplifies calculations and still provides
valuable information to design and operate integrated microflu-
idic systems. Thus, compact models have been derived by
emulating electrical circuits [6,9,16,17]. Although useful in
practical manipulations, these models are limited to micro-scale
channels and relatively high ionic concentrations, as calculations
assume negligibly thin electric double layers (EDL) in relation
to channel cross-sectional size. The effect of heterogeneities in
channel characteristics is also underestimated. Addressing these
issues, a more complete analysis has been proposed to model
single junction networks of cylindrical capillaries [8]. However,
for the particular case of electro-osmotic flow (EOF), equations
reported apply for channel ends exposed to atmospheric pressure
only.

It should be observed that the simultaneous presence of both
electric potential and pressure gradients need to be considered,
because these conjugated forces can rarely be decoupled. In
systems driven solely by pressure, streaming phenomena occur
when microchannels contain interfacial charge, and hence the
electrokinetic ζ-potential is present (see, for instance [18]).
Conversely, in systems driven by EOF, pressure differences
take place if the ζ-potential varies from one branch to another
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Fig. 1. Schematic representation of different microchannel networks: (a) T-
shaped [6], (b) cross-shaped [7], (c) multi-branch [8], (d) double-T [9], (e)
double-cross [10], and (f) multi-junction [11]. References cited above are some
of several examples found in the recent literature. In particular, schemes (b) and
(e) include the nomenclature used here to identify branches and junctions in
calculations. Also in these schemes, arrows indicate the positive direction of the
flow.

[13,19,20]. Further, even when channel ends are open to atmo-
sphere, pressure gradients arise due to differential meniscus
curvatures generated in the reservoirs located at channel ends
[21,22], or due to unequal fluid heights, for example, when the
plate containing the network is not placed normal to gravity
[21,23]. As a last point, it is worth noting that novel applications
combine EOF and pressure-driven flow in the same device [24].

In this context of analysis, the present work discusses a
generalized modelling of the one-dimensional, steady state, elec-
trokinetic flow in microchannel networks. Systems containing
multiple junctions and channels with different characteristics
(geometry, surface properties, circulating fluid) are taken into
consideration. Calculations are aimed to assess the flows of mat-
ter and electricity in each branch of the network, as a function
of applied electric potentials and pressure gradients. The mod-
elling is performed in the framework of Onsager relations for
electrokinetic phenomena [25]. In this sense, the work deals
with a particular, extended application of the general formalism
revised in [26] and, more specifically, in [27]. In fact, here the
coefficients entering the conductance matrix, which relates driv-
ing forces and conjugated flows, are derived for both axial and

plane-symmetric electrokinetic flows, with arbitrary values of ζ-
potential and EDL thickness. In addition, these results are then
used to interpret typical operations carried out in well-defined
microfluidic networks.

The paper is organized as follows: in Section 2, the equations
required to predict the flow rate and the electric current in net-
works of microchannels are outlined. These equations include
coupling coefficients that must be deduced from the governing
equations of electrokinetic flow. For the purposes, theoretical
concepts are overviewed in Section 3. Then in Section 4, the
coefficients are derived in a general form that involves cylindri-
cal and slit microchannels. In particular, analytic expressions are
given for symmetric electrolyte solutions flowing through slit
channels with relatively low surface potentials (Appendix A).
Finally, in Section 5, some examples are considered to illustrate
the capability of the approach to explain situations of practical
interest.

2. Conjugated flows in microchannel networks

2.1. Single microchannels

The aim of this section is to quantify the flow rate Q and the
electric current I developed in straight microchannels, which
contain interfacial charge and the associated EDL of ions in
solution. The driving forces are electric potential and pressure
differences between the ends of the channels, �V and �P,
respectively. In steady state and isothermal conditions, the simul-
taneous flows are described by Onsager relations [25]:

Q = L11�P + L12�V, (1)

I = L21�P + L22�V, (2)

where L11, L12, L21, and L22 are coupling coefficients that depend
on the characteristics of both microchannel and fluid, as it will
be described in detail in Sections 3 and 4. In particular, the
matrix of coefficients is symmetric, i.e., L12 = L21, thus satis-
fying Onsager fundamental theorem [25–27]. Eqs. (1) and (2)
assume that there are no concentration gradients in the axial
direction, which is a good approximation provided the channels
are sufficiently slim. When osmotic effects are important, an
additional term is involved in these equations [26–28].

2.2. Single junction networks

Given networks with one channel intersection, like those
shown in Fig. 1a–c, it is of interest to predict the flow rate and the
electric current in every branch. For this purpose, the following
conservation equations are written:∑N

i=1
Qi = 0, (3)

∑N

i=1
Ii = 0, (4)

where sub index i refers to branch number and N is the total num-
ber of branches in the network (for example, N = 4 in Fig. 1b).
Eq. (3) derives from a simple mass balance for incompressible
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