CrossMark

Novel Genetic Markers Associate With Atrial Fibrillation Risk in Europeans and Japanese

Steven A. Lubitz, MD, MPH,^{1,2} Kathryn L. Lunetta, PHD,^{3,4} Honghuang Lin, PHD,^{3,5} Dan E. Arking, PHD,⁶ Stella Trompet, PHD,^{7,8} Guo Li, MS,⁹ Bouwe P. Krijthe, MSc,^{10,11} Daniel I. Chasman, PHD,^{12,13} John Barnard, PHD,¹⁴ Marcus E. Kleber, PHD,¹⁵ Marcus Dörr, MD,^{16,17} Kouichi Ozaki, PHD,¹⁸ Albert V. Smith, PHD,¹⁹ Martina Müller-Nurasyid, MSc, PHD,^{20,21,22} Stefan Walter, PHD,²³ Sunil K. Agarwal, MD, PHD,²⁴ Joshua C. Bis, PHD,⁹ Jennifer A. Brody, BA,⁹ Lin Y. Chen, MD, MS,²⁵ Brendan M. Everett, MD, MPH,^{12,26} Ian Ford, PHD,²⁷ Oscar H. Franco, MD, PHD,^{10,11} Tamara B. Harris, MD,²⁸ Albert Hofman, MD, PHD,^{10,11} Stefan Kääb, MD, PHD,^{20,29} Saagar Mahida, MB, CHB,³⁰ Sekar Kathiresan, MD, MPH,³¹ Michiaki Kubo, MD, PHD,³² Lenore J. Launer, PHD,²⁸ Peter W. Macfarlane, DSc,³³ Jared W. Magnani, MD, MSc,^{3,34} Barbara McKnight, PHD,³⁵ David D. McManus, MD, ScM,³⁶ Annette Peters, PHD, MPH,^{29,37} Bruce M. Psaty, MD, PHD,^{9,38,39,40} Lynda M. Rose, MSc,⁴¹ Jerome I. Rotter, MD,⁴² Guenther Silbernagel, MD,⁴³ Jonathan D. Smith, PHD,⁴⁴ Nona Sotoodehnia, MD, MPH,^{9,45} David J. Stott, MD,⁴⁶ Kent D. Taylor, PHD,⁴⁷ Andreas Tomaschitz, MD,⁴⁸ Tatsuhiko Tsunoda, PHD,⁴⁹ Andre G. Uitterlinden, PHD,^{10,11,50} David R. Van Wagoner, PHD,⁵¹ Uwe Völker, PHD,^{17,52} Henry Völzke, MD,^{17,53} Joanne M. Murabito, MD, ScM,^{3,54} Moritz F. Sinner, MD, MPH,²⁰ Vilmundur Gudnason, MD, PHD,¹⁹ Stephan B. Felix, MD,^{16,17} Winfried März, MD,^{15,55,56} Mina Chung, MD,^{51,57} Christine M. Albert, MD, MPH,^{12,13,26} Bruno H. Stricker, MB, PHD,^{10,11,50,58} Toshihiro Tanaka, MD, PHD,^{18,59} Susan R. Heckbert, MD, PHD,^{9,39,40} J. Wouter Jukema, MD, PHD,⁶⁰ Alvaro Alonso, MD, PHD,⁶¹ Emelia J. Benjamin, MD, ScM,^{3,34,62,63} Patrick T. Ellinor, MD, PHD^{1,2} Boston and Worcester, Massachusetts; Baltimore, Maryland; Leiden, Rotterdam, the Hague, and Utrecht, the Netherlands; Seattle, Washington; Cleveland, Ohio; Mannheim, Greifswald, Munich, and Neuherberg, Germany; Yokohama and Tokyo, Japan; Reykjavik, Iceland; Minneapolis, Minnesota; Glasgow, Scotland; Leeds, England; Torrance and Los Angeles, California; Bern, Switzerland; and Graz, Austria

Objectives	This study sought to identify nonredundant atrial fibrillation (AF) genetic susceptibility signals and examine their cumulative relations with AF risk.
Background	AF-associated loci span broad genomic regions that may contain multiple susceptibility signals. Whether multiple signals exist at AF loci has not been systematically explored.
Methods	We performed association testing conditioned on the most significant, independently associated genetic markers at 9 established AF loci using 2 complementary techniques in 64,683 individuals of European ancestry (3,869 incident and 3,302 prevalent AF cases). Genetic risk scores were created and tested for association with AF in Europeans and an independent sample of 11,309 individuals of Japanese ancestry (7,916 prevalent AF cases).
Results	We observed at least 4 distinct AF susceptibility signals on chromosome 4q25 upstream of <i>PITX2</i> , but not at the remaining 8 AF loci. A multilocus score comprised 12 genetic markers demonstrated an estimated 5-fold gradient in AF risk. We observed a similar spectrum of risk associated with these markers in Japanese. Regions containing AF signals on chromosome 4q25 displayed a greater degree of evolutionary conservation than the remainder of the locus, suggesting that they may tag regulatory elements.

Conclusions

The chromosome 4q25 AF locus is architecturally complex and harbors at least 4 AF susceptibility signals in individuals of European ancestry. Similar polygenic AF susceptibility exists between Europeans and Japanese. Future work is necessary to identify causal variants, determine mechanisms by which associated loci predispose to AF, and explore whether AF susceptibility signals classify individuals at risk for AF and related morbidity. (J Am Coll Cardiol 2014;63:1200–10) © 2014 by the American College of Cardiology Foundation

Atrial fibrillation (AF) is a heritable (1–6) and morbid (7) arrhythmia. Genome-wide association studies have identified 9 susceptibility regions on 8 chromosomes that implicate genes encoding transcription factors involved in cardiopulmonary development, cardiac expressed ion channels, and other signaling molecules in the pathogenesis of AF (8–12).

Genetic variants associated with AF at previously reported loci extend over broad genomic distances,

often spanning tens or hundreds of thousands of bases. The large span of associated variants at some AF loci raises the possibility that the loci may contain multiple independent, or at least nonredundant, susceptibility signals. A refined understanding of the architecture of association signals at the top loci may identify additional novel susceptibility signals, help characterize functional elements involved in the pathogenesis of AF, and enable

Manuscript received August 8, 2013; revised manuscript received November 10, 2013, accepted December 3, 2013.

From the ¹Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts; ²Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts; ³Boston University and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts; ⁴Department of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts; ⁵Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; ⁶McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; ⁷Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands; ⁸Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands; ⁹Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington; ¹⁰Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands; ¹¹Netherlands Consortium on Healthy Aging (NCHA), Leiden, the Netherlands; ¹²Harvard Medical School, Boston, Massachusetts; ¹³Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts; ¹⁴Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; ¹⁵Institute of Public Health, Social and Preventive Medicine, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany; ¹⁶Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany; ¹⁷DZHK (German Centre for Cardiovascular Research), Partner site Greifswald Greifswald, Germany; ¹⁸Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; ¹⁹Icelandic Heart Association, Kopavogur Iceland and University of Iceland, Reykjavik, Iceland; ²⁰Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany; ²¹Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; ²²Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians University, Munich, Germany; ²³Department of Society, Human Development & Health, Harvard School of Public Health, Boston, Massachusetts; ²⁴Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland; ²⁵Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota; ²⁶Division of Cardiology, Brigham and Women's Hospital, Boston, Massachusetts; ²⁷Robertson Center for Biostatistics, University of Glasgow, Glasgow, Scotland; ²⁸Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, Maryland; ²⁹Deutsches Forschungszentrum für Herz-Kreislauferkrankungen (DZHK), Partner site Munich Heart Alliance, Munich, Germany; ³⁰Leeds General Infirmary, Leeds, England; ³¹Center for Human Genetic Research and Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts; 32Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; ³³Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland; ³⁴Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; 35Department of Biostatistics, University of Washington, Seattle, Washington; ³⁶Departments of Medicine and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts; 37Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg,

Germany; ³⁸Department of Health Services, University of Washington, Seattle, Washington; ³⁹Department of Epidemiology, University of Washington, Seattle, Washington; ⁴⁰Group Health Research Institute, Group Health Cooperative, Seattle, Washington; ⁴¹Division of Preventive Medicine, Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts; ⁴²Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California; ⁴³Department of Angiology, Swiss Cardiovascular Centre, Bern University Hospital, Bern, Switzerland; ⁴⁴Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; ⁴⁵Division of Cardiology, University of Washington, Seattle, Washington; ⁴⁶Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland; ⁴⁷Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California; ⁴⁸Department of Cardiology, Medical University of Graz, Graz, Austria; ⁴⁹Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; ⁵⁰Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands; ⁵¹Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; ⁵²Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University Greifswald, Greifswald, Germany; ⁵³Institute for Community Medicine, Ernst Moritz Arndt University Greifswald, Greifswald, Germany; ⁵⁴Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; 55Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria; ⁵⁶Synlab Academy, Synlab Services GmbH, Mannheim, Germany; ⁵⁷Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio; ⁵⁸Inspectorate for Health Care, the Hague, the Netherlands; ⁵⁹Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; ⁶⁰Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands, and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands; ⁶¹Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota; ⁶²Department of Epidemiology, School of Public Health, Boston University, Boston, Massachusetts; and the 63Preventive Medicine Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts. For grant and funding information for the studies, please see the Online Appendix. Dr. Chasman has received research grant support from AstraZeneca and Amgen. Dr. Everett has received an investigator-initiated research grant from Roche Diagnostics. Dr. Kathiresan has received research grant support from Celera totaling more than \$10,000; and serves on scientific advisory boards for American Genomics and Catabasis. Dr. McManus has received grants from Biotronic, Philips Healthcare, and Otsuka Pharmaceuticals. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose. Drs. Lubitz, Lunetta ,Lin, Arking, Trompet, Li, Krijthe, Chasman, Barnard, Kleber, Dörr, Ozaki, Smith, Müller-Nurasyid, and Walter are joint first authors. Drs. Murabito, Sinner, Gudnason, Felix, März, Chung, Albert, Stricker, Tanaka, Heckbert, Jukema, Alonso, Benjamin, and Ellinor are joint senior authors.

Download English Version:

https://daneshyari.com/en/article/5983152

Download Persian Version:

https://daneshyari.com/article/5983152

Daneshyari.com