FISEVIER

Contents lists available at ScienceDirect

Thrombosis Research

journal homepage: www.elsevier.com/locate/thromres

Regular Article

Disulfide bond exchanges in integrins α IIb β 3 and α v β 3 are required for activation and post-ligation signaling during clot retraction $^{\Rightarrow}$

Ronit Mor-Cohen a,c,*,1, Nurit Rosenberg a,c,1, Yulia Averbukh a,c, Uri Seligsohn a,c, Judith Lahav b,c

- ^a The Amalia Biron Research Institute of Thrombosis and Hemostasis, Chaim Sheba Medical Center, Tel-Hashomer, Israel
- ^b Hemostasis Laboratory, Rabin Medical Center, Petah Tiqva, Israel
- ^c Sackler Faculty of Medicine, Tel Aviv University, Israel

ARTICLE INFO

Article history:
Received 24 October 2013
Received in revised form 12 January 2014
Accepted 3 February 2014
Available online 7 February 2014

Keywords: Integrins αIIbβ3 ανβ3 Clot retraction Disulfide bonds Thiols

ABSTRACT

Background: Integrin α IIb β 3 mediates platelet adhesion, aggregation and fibrin clot retraction. These processes require activation of α IIb β 3 and post-ligation signaling. Disulfide bond exchanges are involved in α IIb β 3 and α v β 3 activation.

Methods: In order to investigate the role of integrin activation and disulfide bond exchange during α IIb β 3- and $\alpha\nu\beta$ 3-mediated clot retraction, we co-expressed in baby hamster kidney cells wild-type (WT) human α IIb and WT or mutated human β 3 that contain single or double cysteine substitutions disrupting C523-C544 or C560-C583 bonds. Flow cytometry was used to measure surface expression and activation state of the integrins. Time-course of fibrin clot retraction was examined.

Results: Cells expressed WT or mutated human α Ilb β 3 as well as chimeric hamster/human α V β 3. The α Ilb β 3 mutants were constitutively active and the thiol blocker dithiobisnitrobenzoic acid (DTNB) did not affect their activation state. WT cells retracted the clot and addition of α V β 3 inhibitors decreased the retraction rate. The active mutants and WT cells activated by anti-LIBS6 antibody retracted the clot faster than untreated WT cells, particularly in the presence of α V β 3 inhibitor. DTNB substantially inhibited clot retraction by WT or double C523S/C544S mutant expressing cells, but minimally affected single C523S, C544S or C560S mutants. Anti-LIBS6-enhanced clot retraction was significantly inhibited by DTNB when added prior to anti-LIBS6.

Conclusions: Both α IIb β 3 and α v β 3 contribute to clot retraction without prior activation of the integrins. Activation of α IIb β 3, but not of α v β 3 enhances clot retraction. Both α IIb β 3 activation and post-ligation signaling during clot retraction require disulfide bond exchange.

© 2014 Elsevier Ltd. All rights reserved.

Introduction

Following vascular injury, the exposed subendothelial matrix activates platelets and initiates, along with coagulation mechanisms, the production of fibrin from fibrinogen [1]. Platelet activation induces inside-out signals that activate integrin $\alpha IIb\beta 3$ resulting in ligand binding to its large globular head. Engagement of $\alpha IIb\beta 3$ by fibrinogen or fibrin generates outside-in signals that mediate cytoskeleton rearrangement which is required for platelet spreading and fibrin clot retraction. Clot retraction enhances thrombus stability and wound healing by compressing

Abbreviations: BHK, baby hamster kidney; CHO, chinese hamster ovary; DMEM, dulbecco modified Eagle's medium; DTNB, dithiobisnitrobenzoic acid; PBS, phosphate-buffered saline; pCMBS, 4-(chloromercuri) benzenesulfonic acid; PDI, protein disulfide isomerase.

the clot and drawing the edges of the wound together [2,3]. Integrin $\alpha IIb\beta 3$ mediates clot retraction by transmitting contractile forces from the actin–myosin cytoskeleton to the fibrin polymers that are tethered outside the cells. Interestingly, several studies reported that $\alpha IIb\beta 3$ expressed in nucleated cells such as Chinese Hamster Ovary (CHO) cells and M21 melanoma cell lines must be activated in order to mediate fibrin clot retraction and integrin activation by talin is required for platelet-mediated fibrin clot retraction [4,5]. Other studies indicated that $\alpha IIb\beta 3$ expressed in mammalian cell lines was able to mediate fibrin clot retraction without prior activation of the integrin [6–9].

The vitronectin receptor, $\alpha\nu\beta3$, is another member of the $\beta3$ integrin subfamily. In contrast to α IIb $\beta3$ which is restricted to platelets and megakaryocytes, $\alpha\nu\beta3$ is widely expressed in various cell lines including endothelial cells and platelets. $\alpha\nu\beta3$ was also shown to mediate fibrin clot retraction when expressed in mammalian cell lines [4,10–12].

Several studies report that activation of $\alpha IIb\beta 3$ is induced by a cascade of multiple disulfide bond exchanges in the $\beta 3$ subunit [13–15]. Although the precise disulfide bonds that participate in this disulfide bond shuffling have not been identified, they were shown to be located at a cysteine rich region of $\beta 3$ comprising four epidermal growth factor (EGF)-like domains [13,14]. Each EGF-like domain contains 3–4

[†] The data were presented at the XXIV International Society on Thrombosis and Haemostasis (ISTH), in Amsterdam, July 1–4, 2013.

^{*} Corresponding author at: Amalia Biron Research Institute of Thrombosis and Hemostasis, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel. Tel.: $+972\ 3\ 5307350$; fax: $+972\ 3\ 5351568$.

E-mail address: ronit.cohen@sheba.health.gov.il (R. Mor-Cohen).

¹ The authors contributed equally to this paper.

disulfide bonds, of which one bond is unique for integrins and is not conserved in other EGF domains [16–19]. We showed that disruptions of the unique disulfide bonds in the EGF domains of the β 3 subunit resulted in constitutively active α IIb β 3 and α v β 3 expressed in Baby Hamster Kidney (BHK) cells and that these bonds play a primary functional role in α IIb β 3 and α v β 3 activation involving disulfide bond exchange [20,21]. We also showed that disulfide bond exchange is necessary for α IIb β 3 post-ligation signaling events including sustained fibrinogen binding to the integrin and adhesion to immobilized fibrinogen [22,23].

In the current study, we investigated the role of integrin activation and disulfide bond exchange in $\alpha IIb\beta 3$ -mediated fibrin-clot retraction by using BHK cells expressing WT $\alpha IIb\beta 3$ or $\alpha IIb\beta 3$ harboring cysteine substitutions in the $\beta 3$ subunit. Since transfected BHK cells also express chimeric hamster/human $\alpha v\beta 3$ receptors, we also investigated the relative contribution of $\alpha v\beta 3$ to clot retraction. We found that disulfide bond exchanges are involved in both receptor activation and postligation signaling during $\beta 3$ integrin-mediated clot retraction.

Materials and Methods

Reagents and Antibodies

Dulbecco modified Eagle's medium (DMEM), L-glutamine and fetal calf serum were purchased from Biological Industries (Beit-Haemek, Israel), lipofectamine reagent and G418 were from Gibco BRL (Paisley, UK), hygromycin was from Roche Diagnosis Gmbh (Mannheim, Germany), human fibrinogen, ε-amino-n-caproic acid and the membrane impermeant free thiols blockers, dithiobisnitrobenzoic acid (DTNB) and 4-(chloromercuri) benzenesulfonic acid (pCMBS) were from Sigma (St Louis, MO) and Toronto Research Chemicals (Toronto, Canada), respectively. Bovine thrombin was purchased from Instrumentation Laboratory, (MA, USA). FITC-conjugated monoclonal antibody P2 against α IIb β 3 was from Immunotech (Marseille, France). The monoclonal antibody LM609 against αvß3 was from Millipore (Temecula, California) and the FITC-conjugated monoclonal antibody 23C6 against αvß3 was from eBioscience (San Diego, CA). FITC-conjugated fibrinogen-mimetic murine monoclonal antibody PAC-1 was obtained from BD Biosciences (San Jose, CA). The αvβ3 inhibitor RO0655233-001 was from Roche Applied Science (Basel, Switzerland). The activating monoclonal antibody anti-LIBS6 was kindly provided by Dr. Mark Ginsberg (Department of Medicine, University of California, San Diego, La Jolla, CA).

Construction of Expression Vectors for Wild Type (WT) and Mutant cDNAs

cDNAs of human α IIb and β 3 in pCDNA3 vector were kindly provided by Dr. Peter Newman from the Blood Center of Wisconsin, Milwaukee, WI. cDNA of α IIb was subcloned into the PvuII site of pCEP4 mammalian expression vector carrying the hygromycin resistance gene as a selection marker (Invitrogen, San Diego, CA) as previously described [24]. Substitutions of selected cysteine residues by serine or other residues were created in the pCDNA3/ β 3 vector using the QuickChange site-directed mutagenesis kit (Stratagene, La Jolla, CA) using two overlapping oligonucleotide primers containing single base pair substitution (the primers are available upon request). Correct incorporation of the mutations into the pCDNA3/ β 3 vectors was verified by DNA sequencing. For creation of double mutants containing two cysteine substitutions together, we first introduced one mutation into normal pCDNA3/ β 3 vector and then used the mutant pCDNA3/ β 3 clone as a template for introducing the second mutation.

Co-Transfection of lphaIIb and eta3 cDNAs

Baby Hamster Kidney (BHK) cells were grown in DMEM supplemented by 2 mg/ml L-glutamine and 5% fetal calf serum. The cells

were co-transfected with 1 μg of normal or mutated forms of pCDNA3/ β 3 and 1 μg of normal pCEP4/ α Ilb using lipofectamine reagent. The transfected cells were grown in a selection medium containing 0.7 mg/ml G418 and 0.5 mg/ml hygromycin. Mock cells were produced by transfecting BHK cells with 1 μg of pCEP4 and 1 μg of pcDNA3 and were selected in the same medium.

Flow Cytometry Analysis of Transfected BHK Cells

Transfected BHK cells were harvested with phosphate-buffered saline (PBS) supplemented with 1 mM EDTA, pelleted and incubated in DMEM for 30 min at room temperature. Then, cells were pelleted again, resuspended in PBS supplemented with 1 mM MgCl₂ and 1 mM CaCl₂ (5 X 10⁵ cells/100 µl) and incubated for 30 min at room temperature with either 20 µl FITC-conjugated P2 antibody, 5 µl FITC-conjugated 23C6 antibody or 20 μl FITC-conjugated PAC-1 antibody. To measure PAC-1 binding after activation of αIIbβ3 by activating antibodies, 1 μl anti-LIBS6 was added to the cells suspended in PBS supplemented with 0.25 mM MnCl₂ (5 X 10⁵ cells/100 µl) prior to the addition of FITC-conjugated PAC-1. The cells were then diluted to 5 X 10⁵ cells/ 600 µl and analyzed for surface fluorescence by flow cytometery (Becton Dickinson, NJ). To measure ligand binding after blocking free thiols, we repeated these experiments in the presence of 2.5 mM DTNB. Baseline for nonspecific binding of the antibodies was measured in mock cells. PAC-1 binding to αIIbß3 was expressed as percent of αIIbβ3 expression level measured by P2 binding. The effects of anti-LIBS6 and DTNB were compared by two tailed paired *t*-test.

Fibrin Clot Retraction

Transfected BHK cells were harvested with PBS/1 mM EDTA, pelleted and incubated in DMEM for 30 min at room temperature. 3.5 x 10⁶ cells were mixed with 250 µl DMEM supplemented with 25 mM Hepes, 5 mM ε-amino-n-caproic acid, 15 mM CaCl₂ and 0.5 units of bovine thrombin. The cells were placed in glass aggregometry cuvettes and 100 µg fibrinogen was added. The clots were allowed to retract at 37 °C and photographed after 1, 3, 5 and 18 hours. All experiments were performed in the presence or absence of 5 μM of the αvβ3 inhibitor RO0655233-001 and/or 2.5 mM DTNB that were added 5 min prior to the addition of thrombin. In some experiments, 3 µl of anti-LIBS6 antibody was added to WT cells either with or without DTNB added 5 min before or after anti-LIBS6. Some experiments were also performed in the presence or absence of the anti-αvβ3 blocking antibody LM609 at 1:50 dilution or in the presence or absence of 100 µM pCMBS. The images were processed by Adobe Photoshop CS software program to produce black and white images and were analyzed by the image program to measure the percent of the retracted clot (black) from the whole clotting medium (black and white). At least 3 experiments for each WT and mutant were conducted. The differences between the mutated and WT cells and the effects of the α vß3 inhibitor and DTNB in each time point were analyzed by two tailed paired t-test. Since the initial retraction curves appeared to be linear until 3 to 5 hours, we also assessed the differences in the initial rate of clot retraction by the slope of the first 5 hours of the retraction using a linear regression analysis function of the GraphPad Prism 5 software program.

Results

Effect of Free Sulfhydryl Inhibitor (DTNB) on the Activation State of WT and Mutated lphaIlbeta3

We previously showed that disruptions of the unique $\beta 3$ EGF-3 disulfide bond C523-C544 by substituting either Cys523 or Cys544 for Serine (C523S or C544S, respectively) resulted in constitutively active $\alpha IIb\beta 3$ and $\alpha v\beta 3$. The double mutant C523S/C544S, in which

Download English Version:

https://daneshyari.com/en/article/6001224

Download Persian Version:

https://daneshyari.com/article/6001224

<u>Daneshyari.com</u>