

Article

Effect of preparation method on the performance of Pd-MnO_x/ γ -Al₂O₃ monolithic catalysts for ground-level O₃ decomposition

Chengjun Ren, Lina Zhou, Hongyan Shang, Yaoqiang Chen*

Key Laboratory of Green Chemistry & Technology of the Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan China

ARTICLE INFO

Article history: Received 24 April 2014 Accepted 16 June 2014 Published 20 November 2014

Keywords: Manganese oxide Palladium Ozone Catalytic decomposition Preparation method

ABSTRACT

 $MnO_x + \gamma - Al_2O_3$ and $MnO_x/\gamma - Al_2O_3$ catalysts were prepared by the sol-gel and sequential precipitation methods, respectively. The same amount of Pd was loaded on these catalysts by incipient wetness impregnation. The two Pd-MnO_x/\gamma-Al_2O_3 catalysts with different physicochemical properties were coated on cordierite. The catalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, H₂ temperature-programmed reduction, and N₂ adsorption-desorption measurement. The preparation method and calcination temperature of MnO_x have significant impact on the crystalline phase of MnO_x , MnO_x species and active oxygen species, and textural properties of the catalysts. The experimental results showed that 0.60 µL·L⁻¹ of ozone was completely decomposed on these catalysts in the temperature range of 16 to 90 °C at space velocities from 380000 to 580000 h⁻¹. In particular, the activity for O₃ decomposition was excellent on the Pd/MnO_x+Pd/γ-Al₂O₃ catalyst that used MnO_x prepared by the sol-gel method. Mn^{n+} is beneficial for O₃ decomposition, and Mn^{2+} , Mn^{3+} , and Mn^{4+} were presented in a mole ratio of 1.7:1:3 on the surface of the catalyst.

> © 2014, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

1. Introduction

Ground-level O₃ is formed from reactions under ultraviolet light between VOCs and nitrogen oxides (NO_x) released from automobile exhaust gas and power plants [1–3]. Modern office equipments such as photocopier machines, laser printers, and air conditioners also produce O₃. These break the tropospheric ozone cycle equilibrium and result in the increase of O₃ concentration and the variation of ground-level temperature [4,5]. O₃ is highly injurious. 0.1 μ L·L⁻¹ O₃ causes severe health problems like headaches, respiratory illness, throat irritation and damage to mucous membranes [6] to humans, and increases cardiovascular mortality [7]. Photochemical smog aerosol formed by O₃ is atmospheric pollution and the resulting low visibility result in an increase in traffic accidents. Woody plants including arbor and shrubs are subjected to damage by ambient O_3 [8]. The typical symptoms of foliar injury are dark stipple, mottling and tip burn. O_3 is also an important air pollution in Europe and North America [9].

According to Occupational Safety and Health Administration regulations, the threshold level for allowable exposure is 0.1 μ L·L⁻¹ during a 8 h period [10]. The allowable concentration in the working environment is 0.1 μ L·L⁻¹ in Japan [11]. In March 2012, the State Environmental Protection Administration of China promulgated the ambient air quality standard regulation GB3095-2012 that the O₃ average concentration must be lower than 0.046–0.075 μ L·L⁻¹ in 8 h, and it will be enforced in January 2016. Therefore, the catalytic decomposition of ground-

^{*} Corresponding author. Tel/Fax: +86-28-85418451; E-mail: nic7501@scu.edu.cn

This work was supported by the National Natural Science Foundation of China (J1103315, J1310008).

DOI: 10.1016/S1872-2067(14)60176-5| http://www.sciencedirect.com/science/journal/18722067 | Chin. J. Catal., Vol. 35, No. 11, November 2014

level O_3 is an important area of research from the point of view of environment and health. It is necessary and urgent that high activity catalysts are found for ozone abatement [12,13].

Challapalli et al. [14] investigated the catalytic decomposition of O_3 over activated carbons (AC). A "high activity" for O_3 decomposition was observed, which was mainly due to the chemical interaction of O3 with activated carbon. This interaction resulted in the formation of oxygen-containing surface groups on the activated carbon until saturation. Then, the conversion sharply decreased and the AC gave "low activity". The catalytic decomposition of O₃ was not steady over the activated carbon. Zhang et al. [15] reported that the surface carbon of the Au/AC catalyst was partly oxidized after O₃ decomposition. Some researchers found that MnO₂ was the most active among the transition metal oxides for O_3 decomposition [10,16,17]. Dhandapani et al. [10] showed by temperature-programmed reduction (TPR) that MnO2 was more reducible than the other oxides. Kameya et al. [18] studied MnO₂ impregnated Pd for the decomposition of O₃ in high humidity. The activity of the catalyst was higher than other existing catalysts. Wu et al. [19] showed that a Pd catalyst demonstrated not only the highest O3 conversion efficiency among the catalysts tested (Pt, Pd, Pd/Ni, and Ni), but also it had strong resistance to water vapor, which inhibited O₃ decomposition reaction at low temperatures. In addition, Zhou et al. [12] observed that a synergetic effect took place between Pd and MnO_x when O_3 was decomposed on the surface of Pd/MnO_x + Pd/ γ -Al₂O₃ catalysts. Pd was both resistant to humidity and an active species.

Pd/MnO_x catalysts were investigated in our group in recent years [12,20,21], where it was shown that 0.6 μ L·L⁻¹ of O₃ was completely decomposed at ambient temperature over these catalysts. MnCO₃ was calcined and decomposed to MnO_x (x = 0.16–2), and then transformed to Mn₂O₃ with increasing calcination temperature [20]. The results showed that mixed phases of $MnCO_3$ and MnO_x had better catalytic activity. Pan et al. [21] showed that MnOx was prepared by a chemical reaction of Mn(NO₃)₂ and urea. The MnCO₃ intermediate was gradually transformed to MnO2 and Mn2O3 with the increase of calcination temperature. They displayed that mixed phases of MnO₂ and Mn₂O₃ have better catalytic activity. The investigations of Yu et al. [20] and Pan et al. [21] revealed that mixed phases of MnO_x had better activity. Zhou et al. [12] confirmed that the activity of mixed phases of a MnO_x catalyst was better than that of a MnO_2 catalyst. Although the prepared catalysts contained Pd, we focused on discussing the MnO_x active species in this paper. The MnO_x was prepared by the sol-gel and sequential precipitation methods. The aim was to study the effect of the preparation method and calcination temperature on the phase of MnO_x, and the specific surface area and electronic characteristics of the surface of the catalysts and their catalytic activity.

2. Experimental

2.1. Preparation of catalysts

The preparation of γ -Al₂O₃ was given in Ref. [12]. Manganese acetate (West Sichuan Chemical Company, AR) and citric acid (Chongqing Oriental Reagent Factory, AR) were mixed in a molar ratio of 1:1 and the solution was adjusted to pH 8.5 by NH₃·H₂O under vigorous stirring at 70 °C to form a sol. The sol was kept overnight and then heated at 70 °C for 3 h in a water bath to eliminate the solvent. The resulting viscous gel was dried at 110 °C for 12 h, then crushed into a fine powder. The dried powder was divided into four parts which were heated in a muffle furnace for 4 h at 300, 400, 500, and 600 °C, respectively. The MnO_x samples were obtained. In addition, a mixture of the MnO_x and γ -Al₂O₃ in a mass ratio of 4:1 was ball-milled with distilled water, and then was dried at 110 °C for 6 h to prepare the MnO_x + γ -Al₂O₃.

An aqueous solution of Al(NO₃)₃ (Chongqing Southern China inorganic reagent factory, AR) was adjusted to pH 9 by NH₃·H₂O with vigorous agitation. An Al(OH)₃ precipitate was formed. Then 50% Mn(NO₃)₂ and NH₃·H₂O were added dropwise into the Al(OH)₃ precipitate at pH 9 under vigorous stirring. The final precipitate was aged at 70 °C for 3 h, filtered off, washed with distill water, and dried at 110 °C for 12 h. After that, the dried powder was divided into four parts and calcined for 6h at 300, 400, 500, and 600 °C, respectively. MnO_x/ γ -Al₂O₃ powder containing MnO_x 80% and γ -Al₂O₃ 20% was obtained.

The Pd catalysts were prepared by wet impregnation. The loading of Pd was 1.6 wt% for all of the samples. (1). An amount of an aqueous solution of Pd(NO₃)₂ (Chengdu Guangming Equipment Company, AR) was impregnated in the MnO_x prepared by the sol-gel method and γ -Al₂O₃ in a mass ratio of 4:1. Then, the Pd/MnO_x and Pd/ γ -Al₂O₃ powder catalysts were mixed together. (2). An amount of an aqueous solution of Pd(NO₃)₂ was impregnated in the MnO_x/ γ -Al₂O₃ prepared by the sequential precipitation method. (3). An amount of an aqueous solution of Pd(NO₃)₂ was impregnated in γ -Al₂O₃. After impregnation, the Pd/MnO_x+Pd/ γ -Al₂O₃, Pd/MnO_x/ γ -Al₂O₃, and Pd/ γ -Al₂O₃ catalysts were dried at 120 °C overnight, and then calcined at 200 °C for 3 h in air.

The above powder was ball-milled with distilled water to form a slurry. The slurry was coated onto a cordierite substrate of 0.28 cm³ (Coring Corporation in American, 400 pore·inch⁻², diameter 5 mm, length 14 mm) and excess slurry was blown off. The catalyst was dried at 110 °C overnight and calcined at 200 °C for 3 h in air to obtain the Pd/MnO_x+Pd/ γ -Al₂O₃, Pd/MnO_x/ γ -Al₂O₃, MnO_x+ γ -Al₂O₃, MnO_x/ γ -Al₂O₃, and Pd/ γ -Al₂O₃ catalysts. The loading of catalyst on the cordierite substrate was 350 g-L⁻¹.

2.2. Catalyst characterization

H₂-TPR was carried out using an automated instrument. In a typical experiment, 100 mg of sample was loaded in a U-shaped quartz microreactor. The sample was heated from room temperature to 550 °C at a heating rate 10 °C·min⁻¹ in a flowing 5%H₂/N₂ mixture gas (30 cm³·min⁻¹). Hydrogen consumption was monitored using a thermal conductivity detector. The XRD analysis was conducted on DX-1000 X-ray diffractometer using Cu K_{α} radiation (λ = 0.15406 nm) at 40 kV and 25 mA. The X-ray diffraction (XRD) data were recorded for 2 θ values from 10° to 80° at a scan 0.05°/s. X-ray photoelectron spectra (XPS)

Download English Version:

https://daneshyari.com/en/article/60017

Download Persian Version:

https://daneshyari.com/article/60017

Daneshyari.com