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The interaction of respiration and heart-rate variability (HRV), leading to respiratory sinus arrhythmia (RSA)
and, in the inverse direction, cardioventilatory coupling has been subject of much study and controversy. A
parametric linear feedback model can be used to study these interactions. In order to investigate differences
between inspiratory and expiratory periods, we propose that models are estimated separately for each peri-
od, by finding least mean square estimates only over the desired signal segments. This approach was tested in
simulated data and heart-rate and respiratory air flow signals recorded from 25 young healthy adults
(13 men and 12 women), at rest, breathing spontaneously through a face mask for 5 min. The results show
significant differences (p b 0.05) between the estimates of coherence obtained from the whole recording,
and the inspiration and expiration periods. Simple and causal coherence from respiration to HRV was higher
during inspiration than expiration. The estimates of gain also differed significantly in the high frequency (HF)
band (0.15–0.5 Hz) between those obtained from the whole recording, and the inspiratory and expiratory
periods. These results indicate that a single linear model fitted to the whole recording neglects potentially
important differences between inspiration and expiration, and the current paper shows how such differences
can be estimated, without the need to control breathing.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The autonomic control of the cardiovascular system has been ex-
tensively studied by techniques that assess heart rate variability
(HRV). Clinical risk evaluation and the relationship between psycho-
logical processes and physiological functions have been commonly
addressed in these studies (Berntson et al., 1997). However, the eval-
uation of autonomic cardiovascular control by means of the HRV is
still subject of some controversy (Parati et al., 2006; Beda et al., 2007).

HRV is modulated by respiration, a phenomenon called respirato-
ry sinus arrhythmia (RSA), which is responsible for most of the vari-
ability of the heart rate (HR). RSA has been used to quantify vagal
activity and it has been related to prognosis of cardiovascular health
(Camm et al., 1996; Berntson et al., 1997; Parati et al., 2006; Beda et
al., 2007). However, not only the autonomic tone influences RSA,
but also other factors including differences in breathing parameters
between individuals in respiratory frequency, amplitude, and the rel-
ative length of inspiration and expiration periods can affect the level
of RSA (Brown et al., 1993; Strauss-Blasche et al., 2000; Cammann
and Michel, 2002; Yasuma and Hayano, 2004).

In previous studies, paced breathing has often been used to stan-
dardize these periods and investigate the effect of their variations
(Stark et al., 2000; Grossman et al., 2004). It was noted that rapid
inspiration leads to increased RSA (Strauss-Blasche et al., 2000),
whereas rapid expiration does not have such an effect. Evidence
that baroreflex responsiveness is different between inspiration and
expiration (Eckberg, 2003) further reinforces the relevance of consid-
ering these two periods separately for investigations of HRV modula-
tion. A protocol in which subjects are breathing spontaneously seems
amore desirable approach than paced breathing, for twomain reasons:
paced breathing leads to physiological repercussions that may
confound in the comprehension of RSA (Ritz, 2009); also, it impacts
on the ability to carry out other physical or mental challenges at the
same time and thus greatly restricts the scenarios that can be
investigated.

The interaction between respiration and HRV has been extensively
investigated in previous works (Porta et al., 2012). The objective of
this study is to adopt a similar approach, but estimating the transfer
function separately for the inspiration and expiration periods.
Specifically, we present a method that can provide such separate es-
timates from the same recording and test for differences in the cou-
pling between respiration and HRV in these two periods on a set of
data recorded from healthy adult volunteers at rest, breathing
spontaneously.
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2. Methods

In the following, first the model-based methods for estimating the
coherence and gain will be reviewed (based on Porta et al., 2002)
followed by a description of how this can be adapted to permit sepa-
rate estimates during only the inspiratory and expiratory periods.

2.1. Coherence, causal coherence and autoregressive modeling with
missing samples

The coherence function expresses the synchrony between the two
signals x1 and x2, and is defined as:

γ2
1;2 ¼ S12 fð Þj j2

S11 fð Þ⋅S22 fð Þ ð1Þ

where S12(f) is the cross-spectrum, and S11(f) and S22(f) are the
auto-spectra of the analyzed signals, respectively (Bendat and Piersol,
1986; Baccala and Sameshima, 2001). Initially developed for economic
science, the Granger concept of causality aims to assess causality in
relationships between the two signals by assessing the contribution
the second signal makes to predicting the next sample of the first,
over and above the prediction achieved from only previous samples of
the latter (Granger, 1969). Applying the Granger causality concept to
coherence leads to causal coherence, which aims at quantifying the
level at which two signals are functionally connected (Baccala and
Sameshima, 2001). Granger causality (Granger, 1969) is probably the
most commonly used approach in related studies of the cardiovascular
system, (Porta et al., 2002; Faes et al., 2004; Faes and Nollo, 2006),
though there are several other alternatives, such as symbolic coupling
traces (Wessel et al., 2011) and mixed state analyses (Wiesenfeldt et
al., 2001). Granger causality has also previously been used in the con-
text of the cardio-respiratory interactions, for example in Porta et al.
(2002), Faes et al. (2004), and Faes and Nollo (2006).

In order to obtain the (Granger) causal coherence, a multivariate AR
model is implemented that represents a closed loop model as shown in
Fig. 1 (Porta et al., 2002).

This is defined by the following equation system:

x1 t½ � ¼ ∑n
k¼1a1;1 kð Þx1 t−k½ � þ∑n

k¼1a1;2 kð Þx2 t−k½ � þw1 t½ � ð2Þ

x2 t½ � ¼ ∑n
k¼0a2;1 kð Þx1 t−k½ � þ∑n

k¼1a2;2 kð Þx2 t−k½ � þw2 t½ � ð3Þ

In our study, x1 represents the HRV signal and x2 the respiratory
flow signal, w1 and w2 are the independent white Gaussian noises,
with zero mean and variances of λ1 and λ2 respectively, and n is the
model order, which is here taken to be equal for all filters. The

coefficients of the model are represented by ai,j(k), where i refers to
the output and j the input signal, and k is the lag. It should be noted
that here a2,1(0) = 0 while a1,2(0) ≠ 0, imposing strict causality
only in the x2 → x1 direction but allows for instantaneous effects in
the reverse pathway. A linear representation of the causal relation-
ship from x1 to x2 is obtained by setting all the a1,2(k) coefficients to
zero, and equivalently, to obtain the x2 to x1 relationship, the a2,1(k)
coefficients are set to zero. This way, feedback effects from the other
signal are disregarded and the causal effects are obtained. The auto
and cross-spectral density functions can then be calculated, after
z-transformation (Porta et al., 2002) as:

S11 fð Þ ¼ Δ zð Þj j2⋅ 1−A2;2 zð Þ�� ��2⋅λ2
1 þ A1;2 zð Þ�� ��2⋅λ2

2

h i
ð4Þ

S22 fð Þ ¼ Δ zð Þj j2⋅ A2;1 zð Þ�� ��2⋅λ2
1 þ 1−A1;1 zð Þ�� ��2⋅λ2

2

h i
ð5Þ

S12 fð Þ ¼ Δ zð Þj j2⋅ 1−A2;2 zð Þ
� �

⋅A2;1 z−1
� �

⋅λ2
1 þ A1;2 zð Þ⋅ 1−A1;1 z−1

� �� �
⋅λ2

2

h i
ð6Þ

where

Δ zð Þj j2 ¼ 1−A1;1 zð Þ
� �

⋅ 1−A2;2 zð Þ
� �

−A1;2 zð Þ⋅A2;1 zð Þ
� �−1 ð7Þ

and

Ai;j ¼
Xn

k¼0

ai;j kð Þz−k ð8Þ

with i,j = 1, and 2 and z ¼ ej⋅2⋅π⋅f =f s , f is the frequency, and fs the sam-
pling frequency.

The simple (bidirectional) coherence can then be calculated by di-
rectly inserting Eqs. (4), (5) and (6) in Eq. (1), and causal coherences
in a similar manner after removing the feedback path (Porta et al.,
2002):

γ2
i→j fð Þ ¼ γ2

i;j fð ÞjAi;j zð Þ¼0 ð9Þ

with j,i = 1, and 2 and the gain as

Gi→j fð Þ ¼ Aj;i fð Þ
1−Aj;j fð Þ

�����

����� ð10Þ

with j,i = 1, and 2.
In order to calculate the coherence (causal or not) and the gain for

only the inspiratory (or expiratory) phase, we now mark all the sam-
ples during the expiratory (or inspiratory) phase as ‘missing’ by re-
placing them with Not-a-Number (NaN). This leads to signals with
gaps (see Fig. 2) and thus parameter estimation methods need to be
adapted accordingly. The coefficients of the AR model were estimated
by the least squares method applied over the available (remaining)
samples (Simpson et al., 2001; Simpson et al., 2005). This may be il-
lustrated for the simple example for a univariate AR model shown
in Eq. (11).

x n½ � ¼
XM

i¼1

aix n−i½ � þ ε n½ � ð11Þ

and order M = 3, with sample x[4] missing. As shown in Eq. (12), the
error ε can only be calculated for samples ε[3], ε[8], ε[9] and ε[10]. In
all other lines, either the left side of the equation or the matrix prod-
uct is NaN, and hence the residual ε[i] is also a NaN. The parameters
a1, a2, and a3 are then estimated by minimizing the mean-square

Fig. 1. Closed loop model representation used to model the relationship between HRV
and respiration, WGN indicates white Gaussian noise.
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