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It is urgently aimed in prenatal medicine to identify pregnancies, which develop life-threatening preeclamp-
sia prior to the manifestation of the disease. Here, we use recurrence-based methods to distinguish such
pregnancies already in the second trimester, using the following cardiovascular time series: the variability
of heart rate and systolic and diastolic blood pressures. We perform recurrence quantification analysis
(RQA), in addition to a novel approach, ε-recurrence networks, applied to a phase space constructed by
means of these time series. We examine all possible coupling structures in a phase space constructed with
the above-mentioned biosignals. Several measures including recurrence rate, determinism, laminarity, trap-
ping time, and longest diagonal and vertical lines for the recurrence quantification analysis and average path
length, mean coreness, global clustering coefficient, assortativity, and scale local transitivity dimension for
the network measures are considered as parameters for our analysis. With these quantities, we perform a
quadratic discriminant analysis that allows us to classify healthy pregnancies and upcoming preeclamptic
patients with a sensitivity of 91.7% and a specificity of 45.8% in the case of RQA and 91.7% and 68% when
using ε-recurrence networks, respectively.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, a severe pathology called preeclampsia (PE) affects
healthy nulliparous women in a range between 2% and 7% worldwide
(Sibai et al., 2005). The main features of PE are severe hypertension
and proteinuria for which the pathophysiology is not well understood
at present. Several strategies are used in order to predict PE, among
which we can mention biochemical markers, such as fms-like tyrosine
kinase 1 (sFlt-1), placental growth factor (PlGF), soluble endoglin
(Ohkuchi et al., 2011; Rana et al., 2007), maternal autoantibody, angio-
tensin II type I receptor agonistic autoantibody (AT1-AA) (Siddiqui et al.,
2010), urinary biomarkers (Carty et al., 2011), noninvasive cardiovascu-
lar (CV) indicators (Malberg et al., 2007;Walther et al., 2006), or a com-
bination of the above (Stepan et al., 2008).

In recent years, recurrence methods based on recurrence plots
(RP) have been successfully used in different fields of natural sciences

as physics (Ngamga et al., 2012) and biology (Angus et al., 2012), but
also to answer economic (Hirata andAihara, 2012) ormedical questions
(Wessel et al., 2009). Recurrence quantification analysis (RQA), in par-
ticular, constitutes a very useful tool for the description and analysis
of a systems diversity (Marwan, 2008; Marwan et al., 2007). More
recently, the recurrence concept has been extended to networks and
applied in novel time series analysis methods (Marwan et al., 2009),
finding several applications such as in paleoclimate modeling (Donges
et al., 2009).

The detection of cardiovascular disorders has been considerably im-
proved due to both technological advances and new methods of time
series analysis. Nevertheless, there are still unclear mechanisms that
cannot be explained by standard data analysis. Nonlinear data analysis
andmodelingmethods of CV physics allow to improve clinical diagnos-
tics and also a better understanding of CV regulation. One of the most
important aspects of these methods is that they focus on noninvasive
measured biosignals. Among the biosignals that CV physics deals with
are the heart rate variability (HRV) and the variabilities of systolic
blood pressure (SBPV) and diastolic blood pressure (DBPV).
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In this work, we apply the approach of RQA and ε-recurrence net-
works to analyze CV biosignals, obtained by noninvasive techniques,
with the aim of developing a classificationmethod to identify patients
who develop PE in a pool of pregnancies within the second trimester.

2. Methods

2.1. Clinical aspects

We considered for this study 96 pregnancies with abnormal uterine
perfusion (AUP), followed by means of Doppler sonography in the sec-
ond trimester, between the 18th and the 26thweek of gestation (WOG)
of pregnancy, at the Department of Obstetrics and Gynecology of the
University of Leipzig, Germany. Immediately after the Doppler exami-
nation, the blood pressure was measured noninvasively via finger cuff
for 30 min (sampling rate: 100 Hz, Portapres device model 2, BMI-TNO,
Amsterdam, The Netherlands). The continuous blood pressure curves
were used to extract the time series of beat-to-beat intervals and systol-
ic and diastolic blood pressures, allowing us to obtain the CV values
(HRV, SBPV, andDBPV). The length of the dataset per variable is roughly
of 1600 samples (heart beats). At the time of examination, the women
were healthy, normotensive, without clinical signs of cervical incompe-
tence, and on no medication. After the 30th WOG, 24 patients devel-
oped PE. Further details on the methodology can be found in Malberg
et al. (2007). We point out that the root mean square errors of heart
beats calculated from blood pressure curves (compared to ECG slope
detection) is about 5–6 ms (Suhrbier et al., 2006). Therefore, the compu-
tation of the beat-to-beat-intervals from the distal pulse wave measure-
ment as it has been performed in this paper is an acceptable alternative;
however, this has to be confirmed in another comparative study.

2.2. Recurrence methods

The concept of recurrence applied to a single trajectory of the dynam-
ical system allows us to obtain the recurrence matrix whose elements
are given by Ri,j = Θ(ε − ‖xi − xj‖), where Θ(⋅) represents the Heavi-
side function, ‖ ⋅ ‖ is a suitable norm, and ε is a threshold distance that
should be chosen adequately according to the characteristics of the
embedded attractor into the phase space. We use RQA and ε-recurrence
networks with the aim of distinguishing between healthy individuals
and patients with PE.

2.2.1. Recurrence quantification analysis
The RQA is a method of nonlinear data analysis that quantifies the

number and duration of recurrences of a dynamical system presented
by its state space trajectory. This method was developed by Zbilut and
Webber (1992) and extended by Marwan et al. (2002). Several mea-
sures might be used to quantify the time series of a system when
using RQA, such as the following: recurrence rate (RR), the percentage
of recurrence points in an RP, corresponding to the correlation sum; de-
terminism (DET), the percentage of recurrence points forming diagonal
lines; laminarity (LAM), the percentage of recurrence points forming
vertical lines; trapping time (TT), the average length of the vertical
lines; and some other self-explanatorymeasures such as longest diago-
nal line (LMAX) and longest vertical line (VMAX). Amore detailed descrip-
tion of these measures can be found in Marwan et al. (2007).

2.2.2. Recurrence networks
The basic idea of time series analysis based on complex network

techniques relies on the fact that a time series may be transformed
into a complex network from which we can extract the adjacency
matrix, allowing us to obtain local and global network properties
(Donner et al., 2011).We interpret the recurrencematrix R as the adja-
cencymatrix of an unweighted and undirected complex network, com-
monly called the ε-recurrencenetwork,which is associatedwith a given
time series. Possible self-loops must be avoided in this network; thus, a

Kronecker delta must be subtracted from the recurrence matrix. The
elements of the adjacency matrix for an ε-recurrence network are thus

Ai;j εð Þ ¼ Ri;j εð Þ−δi;j; ð1Þ

where the ε-dependence is considered explicitly as in the case of
RQA. There is no universal criterion for choosing ε, but the choice
must be made avoiding too small values, which lead to a situation in
which there are not enough recurrence points, or too large values,
implying that every vertex is connected with many other vertices
irrespective of their actual mutual proximity in phase space (Donner
et al., 2010b). Having reconstructed the adjacency matrix A from a
time series, we can apply appropriate network characteristics to ana-
lyze and obtain information on the underlying system (Donges et al.,
2012). In Appendix A, there is an explanation of how to obtain the adja-
cency matrix, the associated network, and the 4-element motifs. In this
work, we focus our interest on five global network measures: the aver-
age path length (L), which is the mean value of the shortest geodetic
path lengths li,j considering all pair of vertices (i,j); the mean coreness
C≀ð Þ, which is the average of the coreness (significance of a node and
its “popularity” in the network) of all the vertices (Batagelj and
Zaveršnik, 2002); the global clustering coefficient Cð Þ, which is the aver-
age of the clustering coefficient of each vertex (ratio of triangles includ-
ing vertex i and the number of triples centered on vertex i, where triple
refers to a pair (j,k) of vertices that are both linked with i, but not nec-
essarilymutually linked); the assortativity Að Þ, the tendency for vertices
in networks to be connected to other vertices that are like (or unlike)
them in some way (Newman, 2003); and the scale local transitivity
dimension DTð Þ, defined as DT ¼ logT

łog 3=4ð Þ, where T is the transitivity
(ratio of the number of triangles in the network times three and the
number of linked triples of vertices). These four measures depend on
ε and have a global character. A detailed description of networks and
their properties can be found in Boccaletti et al. (2006).

3. Data processing and statistics

Weuse an algorithm that avoids artifacts such as extrasystolic beats.
The original time series from consecutive Rwaves were filtered using a
preprocessing algorithm that first removes obvious recognition errors,
then applies an adaptive percent filter, and finally an adaptive control-
ling filter (Wessel et al., 2007). With the aim of using a recurrence
approach, we consider the three CV indicators and several possible em-
beddings. An estimation of the coupling structure of CV indicators has
been performed using nonlinear additive autoregressive models with
external input, following the idea of Granger causality (Riedl et al.,
2010). This coupling analysis shows that HRV, DBPV, and SBPV respond
to respiration; SBPV respond to DBPV and the latter to HRV. In our case,
we donot consider respiration; thus, the coupling structuremay be rep-
resented as in Fig. 1(a), where, according to the coupling scheme, there
is a delay between the HRV, the DBPV, and the SBPV. For simplicity, we
write down the coupling structure as (HRV(t), DBPV (t + 1), SBPV
(t + 2)), or simply H(t)D(t + 1)S(t + 2) ≡ 012.

We sought to predict whether or not a patient develops PE using the
CV indicators embedded in a phase space determined by the structure
of coupling. We consider a minimalist assumption in which the struc-
ture of coupling between HRV, DBPV, and SBPV is identical in each sub-
ject of a group and that this structure does not change during the
measurement. In this study, we set out to test all the possible structures
of coupling shown in Fig. 1 and a wide range of the threshold ε going
from 0.01σ to 0.99σ, where σ is the standard deviation of the underly-
ing process in the embedded phase space. From a simple CV time series
corresponding to each patient, we construct a complex network for
each possible structure of coupling and each value of ε. Then we com-
pute the four network measures: C;L; C≀;DTð Þ, and with these new
measures, we perform an analysis to classify the groups of individuals:
healthy and preeclamptic patients. For that purpose, we firstly verify
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