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ARTICLE INFO ABSTRACT

Article history: Dopamine (DA) transmission is governed by processes that regulate release from axonal boutons in the
Received 23 December 2015 forebrain and the somatodendritic compartment in midbrain, and by clearance by the DA transporter,
Received in revised form 5 February 2016 diffusion, and extracellular metabolism. We review how axonal DA release is regulated by neuronal

Available online 23 February 2016 activity and by autoreceptors and heteroreceptors, and address how quantal release events are regulated

in size and frequency. In brain regions densely innervated by DA axons, DA clearance is due
Keywo“_ls" predominantly to uptake by the DA transporter, whereas in cortex, midbrain, and other regions with
gei:;fejssiz.nuptake relatively sparse DA inputs, the norepinephrine transporter and diffusion are involved. We discuss the
Quantal size role of DA uptake in restricting the sphere of influence of DA and in temporal accumulation of
Dopamine transporter extracellular DA levels upon successive action potentials. The tonic discharge activity of DA neurons may
Autoreceptor be translated into a tonic extracellular DA level, whereas their bursting activity can generate discrete
Heteroreceptor extracellular DA transients.

Acetylcholine © 2016 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND
nAChRs license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Regulation of dopamine release

Dopamine (DA) neurotransmission is generally initiated by the
fusion of synaptic vesicles in axonal boutons, with the exceptions
of release by amphetamine-like drugs that can release DA via
reverse transport through the DA uptake transporter (DAT) [1,2],
and DA release from dendrites, which is widely suspected to occur
via fusion of specialized secretory organelles [3]. This process is
regulated at many levels, including DA synthesis, uptake and
vesicular transport, as well as by Ca®>* homeostasis and regulatory
exocytotic proteins. In addition, neurotransmitter receptors on DA
neurons, axons, and dendrites provide feedback, regulate DA
release, and in some conditions locally drive DA release.

1.1. Dopamine release by synaptic vesicle fusion

1.1.1. Quantal release and detection

In 1950, Bernard Katz and Paul Fatt published recordings of
random electrical “noise” consisting of spontaneous small
“action potentials” (a term now used quite differently) at frog
neuromuscular junction they compared to “fluctuations in the
number of light quanta which strike the [photo]receptor cells”
[4]. These “miniature end plate potentials” required extracellular
Ca%" and were exacerbated by high osmolarity [5]. The events fit
a Poisson distribution, which simulates the probability of
random occurrences of multiple basic events [6], indicating
that neurotransmission occurs in multiples of a “quantal” unit.
They conjectured that “the apparatus for the release of
acetylcholine (ACh) at a junction is subdivided into a large
number of units (at least 100), each of which is able to operate
independently of the rest” [7].

In contrast to ionotropic ACh receptors, DA primarily activates G
protein-coupled receptors that do not produce small rapid
currents, and so a means to detect quantal DA release was elusive.
An effective approach was provided by electrochemical catechol-
amine detection, introduced by Ralph Adams and colleagues [8-
10]. These methods were improved by the introduction of carbon-
fiber microelectrodes for detection of catecholamines by Francois
Gonon [11] and Michael Armstrong-James and Julian Millar [12,13].

Armstrong-James and Millar [14] also developed the method of
fast-scan cyclic voltammetry (FCV) with carbon-fiber electrodes,
which is widely used for monitoring DA release and uptake in vivo
and in ex vivo brain slices.

The first analysis of quantal release of catecholamines used
large secretory vesicles from the adrenal gland. Extracts from
adrenal cells provided the original evidence for secretory
transmission [15]. In 1990, Mark Wightman and colleagues [16]
used amperometry to detect quantal catecholamine release from
adrenal cells. In contrast to postsynaptic recording, amperometric
recording indicates directly the number of molecules released and
the duration of a quantal release event, which in adrenal
chromaffin cells is about ~10° molecules over the course of
~1071s.

Amperometric recording was then adapted to record from
axonal terminals of cultured midbrain DA neurons. Synaptic
vesicles in these axons are ~40 nm in diameter, with a volume that
is ~1000-fold smaller than that of adrenal chromaffin granules,
with proportionally smaller quantal events that are of shorter
duration than those from adrenal cells [17,18]. The released
catecholamine was identified as DA based on: (1) blockade by
reserpine, a vesicular monoamine transporter type 2 (VMAT2)
inhibitor; (2) colocalization with tyrosine hydroxylase (TH); (3) the
potential required for DA oxidation; (4) absence of detection from
neurons that lack DA; and (5) elevation of quantal size following
exposure to 1-DOPA, a DA precursor, or increased
VMAT2 expression. The shape of the majority of quantal DA
events in neurons closely fit a simulation of transmitter diffusion
through a pore [19], but some release events that deviate from such
simple shapes (see Section 1.1.3).

In cultured DA neurons, quantal events have been recorded
from boutons in axons, and from acutely dissociated DA somata
[20], which may represent quantal somatodendritic release events
or release of synaptic vesicle precursors that would have been
trafficked to axons. Release events have also been found in acute
midbrain slices, although it is difficult to exclude release from
nearby DA or serotonin terminals [21]. It seems likely that
occasional DA secretion occurs at cell bodies, as
VMAT?2 transfection of hippocampal neurons can produce quantal
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