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h i g h l i g h t s

� We developed a fully automatic detector for intra-operative high frequency oscillations.
� The detector’s parameters were validated on a large set of intraoperative electrocorticograms.
� The detector provides a standardized definition of clinically relevant HFO.

a b s t r a c t

Objective: High frequency oscillations (HFOs) and in particular fast ripples (FRs) in the post-resection
electrocorticogram (ECoG) have recently been shown to be highly specific predictors of outcome of epi-
lepsy surgery. FR visual marking is time consuming and prone to observer bias. We validate here a fully
automatic HFO detector against seizure outcome.
Methods: Pre-resection ECoG dataset (N = 14 patients) with visually marked HFOs were used to optimize
the detector’s parameters in the time–frequency domain. The optimized detector was then applied on a
larger post-resection ECoG dataset (N = 54) and the output was compared with visual markings and sei-
zure outcome. The analysis was conducted separately for ripples (80–250 Hz) and FRs (250–500 Hz).
Results: Channel-wise comparison showed a high association between automatic detection and visual
marking (p < 0.001 for both FRs and ripples). Automatically detected FRs were predictive of clinical out-
come with positive predictive value PPV = 100% and negative predictive value NPV = 62%, while for rip-
ples PPV = 43% and NPV = 100%.
Conclusions: Our automatic and fully unsupervised detection of HFO events matched the expert obser-
ver’s performance in both event selection and outcome prediction.
Significance: The detector provides a standardized definition of clinically relevant HFOs, which may
spread its use in clinical application.
� 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.

1. Introduction

In recent years, interictal high frequency oscillations (HFOs,
>80 Hz) recorded in epileptic brains have been shown to be a
reliable biomarker for the identification of the epileptogenic
zone (Jacobs et al., 2012; Zijlmans et al., 2012b; Fernandez and

Loddenkemper, 2013). HFOs are classified according to their
spectral range in ripples (80–250 Hz) and fast ripples (FR, 250–
500 Hz) (Bragin et al., 2010). FR in the intraoperative electrocor-
ticography (ECoG) have been proposed as a predictor of clinical
outcome (Wu et al., 2010; van ’t Klooster et al., 2015b). Both
studies provide examples of surgical cases where incomplete
resection of electrode locations with HFOs resulted in recurrent
seizures. Wu et al. (2010) recorded intraoperatively before resec-
tion while van ’t Klooster et al. (2015b) recorded intraoperatively
after resection.
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To date, the identification of HFOs is mainly performed by
visual marking or semi-supervised detection (Urrestarazu et al.,
2007; Zijlmans et al., 2009; Jacobs et al., 2010; Zelmann et al.,
2010). Automatic detection of HFOs in general, and FRs in particu-
lar, suffers from an ensemble of detectability issues, such as the
low signal-to-noise ratio and the noisy intraoperative environ-
ment. In order to implement the clinical use of HFOs, their value
has yet to be confirmed in prospective fashion. The first small clin-
ical trial (N = 78), testing non-inferiority of HFOs compared to
interictal spikes during surgery, is currently being run (van ’t
Klooster et al., 2015a). Evidence for superiority of HFOs over spikes
requires an international clinical trial with large numbers of
patients, which will need fast, unsupervised and reliable automatic
detection of HFOs. Besides reducing the observers’ workload, auto-
matic detection would provide a standardized procedure and def-
inition of clinically relevant HFOs.

Several automatic HFO detectors have been developed by differ-
ent research groups (Staba et al., 2002; Gardner et al., 2007;
Worrell et al., 2008; Blanco et al., 2010; Zelmann et al., 2010;
Dümpelmann et al., 2012; Birot et al., 2013; López-Cuevas et al.,
2013; Burnos et al., 2014, 2016). The general implementation fol-
lows a two-stage procedure: a first step aims to identify a reliable
threshold that is used to isolate events of interest (EoI), and a
second step recognizing HFOs from spurious EoI, e.g. spikes or
artifacts, on the basis of a mathematical definition of HFO. The
time–frequency representation appears to be a promising approach
to distinguish valid HFOs among EoI, both to detect visually marked
events (wavelet transform, (Birot et al., 2013)) and to predict clinical
outcome (Stockwell transform (Burnos et al., 2014)).

We improved on a previously described detector (Burnos et al.,
2014) and added a third stage rejecting artifacts occurring syn-
chronously in several channels. The detector, targeting HFOs in
intraoperative ECoG recordings, was calibrated on a first dataset
of pre-resection recordings with visually marked HFOs (dataset 1,
(Zweiphenning et al., 2016)). After calibration, the detector was
applied on a second dataset of post-resection recordings and its
output was compared with visual HFO markings and patient’s clin-
ical outcome (dataset 2, van ’t Klooster et al. (2015b)). We here
evaluate the performance of this completely automatized tool for
intraoperative HFO detection, and describe the predictive power
of automatically detected post-resection ripples and FRs with
respect to seizure outcome.

2. Methods

2.1. Datasets and set-up

We used two datasets of patients with refractory epilepsy who
underwent surgery with intraoperative ECoG (sampling rate
2048 Hz) at the University Medical Center Utrecht (UMCU)
between 2008 and 2012. These datasets were collected conform
the guidelines of the institutional ethical committee of the UMCU.

Dataset 1 consisted of 28 intraoperative pre-resection one min-
ute recordings from 14 patients, two recordings from each patient
(Zweiphenning et al., 2016). The first minute will be called training
set and the second minute test set. Dataset 2 consisted of one min-
ute of intraoperative post-resection recordings from 54 patients in
which resection sites and clinical outcome had been carefully doc-
umented (van ’t Klooster et al., 2015b). The post-resection record-
ings of the 14 patients with pre-resection recordings in dataset 1
were included in dataset 2.

ECoG was collected using 4 � 5 or 4 � 8 electrode grids and
1 � 6 or 1 � 8 electrode strips (Ad-Tech, Racine, WI) placed directly
on the cortex. Platinum electrodes with 4.2 mm2 contact surface,
embedded in silicone, and 1 cm inter-electrode distances were

used. Recordings were made with a 64-channel EEG system
(MicroMed, Veneto, Italy) at 2048 Hz sampling rate with an anti-
aliasing filter at 538 Hz. Data were analyzed in a bipolar montage
along the length of the grid. General anesthesia was induced and
maintained using a propofol infusion pump. Propofol was tapered
during ECoG registration until a continuous ECoG background pat-
tern was achieved.

The patients were interviewed in the clinic (UMCU or else-
where) at the regular follow-up intervals. Postsurgical seizure out-
come was classified according to Engel’s score, dichotomized into
good (Engel 1) and poor (Engel P2) outcome. Follow-up was
>1 year.

2.2. Visual analysis

As stated in the previous publication (van ’t Klooster et al.,
2015a,b), visual marking of HFO was performed semi-
automatically by validating the HFOs identified by the Montreal
Neurological Institute detector (MNI detector, Zelmann et al.,
2010) adapted for intraoperative ECoG (van Klink et al., 2014).
HFOs were detected if the energy of the signal was larger than
baseline during a certain period with a minimum of 4 oscillations.
The MNI detector has a high false positive rate, which requires
visual validation.

Data were visually inspected in Stellate Harmonie Reviewer
(v7.0, Montreal, QC, Canada). ECoG was high-pass filtered using a
finite impulse response (FIR) filter >80 Hz for ripples and >250 Hz
for FRs. Split screen allowed to simultaneously visualize ripples
(gain 5 lV/mm) and FRs (gain 1 lV/mm) with time interval of
0.4 s/page (Jacobs et al., 2010). Events were visually discarded if
it did not fit with the requirements of having at least four oscilla-
tions and clearly standing out from the baseline or if it was an
artefact.

In dataset 1 (pre-resection recordings, N = 14 patients) the
visual marking was performed in consensus by two reviewers.
For dataset 2 (post-resection recordings, N = 54 patients), the pro-
cedure has been described in detail in (van ’t Klooster et al., 2015a,
b). The two expert observers were not independent in their visual
marking but reached consensus for each event already during the
marking process with a 100% agreement.

2.3. Automatic detection

The automatic detector consists of three stages, which are
described in detail below. The analysis was conducted separately
for ripples (80–250 Hz) and FRs (250–500 Hz). The signal was fil-
tered for the ripple and FR frequency bands by a FIR equiripple fil-
ter. For the ripple range filter parameters were set to band-pass
80–240 Hz, with a stopband of 70 Hz and 250 Hz. For the FR range
the band-pass filter was set at 250–490 Hz, with a stopband of
240 Hz and 500 Hz. In both cases the stopband attenuation was
set to 60 dB.

2.3.1. Stage I: baseline detection
We defined as baseline those segments of artifact-free ECoG

without oscillations. The baseline was identified by time–
frequency resolved entropy in the frequency band of interest,
similarly to what was previously reported for wavelet entropy
(Rosso et al., 2001; Zelmann et al., 2010). As entropy kernel, we
introduced the Stockwell-transform (Stockwell et al., 1996). The
maximum theoretical Stockwell entropy (SEmax) is obtained for
white noise. Intervals with sufficiently high Stockwell entropy
band, were considered good candidates for the baseline (i.e. no
oscillation present). We defined the threshold for baseline entropy
BLthr � SEmax, with BLthr being the parameter setting the entropy
threshold. The high entropy samples (entropy > BLthr � SEmax)
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