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h i g h l i g h t s

� Empirical assessment of the incentive to learn brain self-regulation during operant conditioning.
� Learning incentive and classification accuracy peak at different task difficulties.
� Specificity is more important for learned brain self-regulation than sensitivity of neurofeedback.

a b s t r a c t

Objective: The balance between action and reward during neurofeedback may influence reinforcement
learning of brain self-regulation.
Methods: Eleven healthy volunteers participated in three runs of motor imagery-based brain–machine
interface feedback where a robot passively opened the hand contingent to b-band modulation. For each
run, the b-desynchronization threshold to initiate the hand robot movement increased in difficulty (low,
moderate, and demanding). In this context, the incentive to learn was estimated by the change of reward
per action, operationalized as the change in reward duration per movement onset.
Results: Variance analysis revealed a significant interaction between threshold difficulty and the relation-
ship between reward duration and number of movement onsets (p < 0.001), indicating a negative learn-
ing incentive for low difficulty, but a positive learning incentive for moderate and demanding runs.
Exploration of different thresholds in the same data set indicated that the learning incentive peaked at
higher thresholds than the threshold which resulted in maximum classification accuracy.
Conclusion: Specificity is more important than sensitivity of neurofeedback for reinforcement learning of
brain self-regulation.
Significance: Learning efficiency requires adequate challenge by neurofeedback interventions.
� 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.

1. Introduction

Neurofeedback and brain-interface technology are being
increasingly applied in fields of research aiming to restore upper-
limb functionality in stroke survivors. Greater gains are currently
being achieved by subacute (Pichiorri et al., 2015) than by chronic
patients (Ang et al., 2014). On the basis of the neurophysiological
correlates of motor imagery (Kaiser et al., 2011) and motor cortex
excitability (Takemi et al., 2013; Kraus et al., 2016a), such as mod-
ulation of b-power (15–30 Hz), these devices may provide an effec-

tive backdoor to the motor system (Sharma 2006; Bauer et al.,
2015), particularly when the subject receives contingent proprio-
ceptive feedback with robotic rehabilitation technology (Gomez-
Rodriguez et al., 2011; Vukelić et al., 2014; Vukelić and
Gharabaghi, 2015).

When it comes to these restorative brain–robot interfaces (BRI),
the classification of brain states is often linear (Theodoridis and
Koutroumbas, 2009), i.e. based on thresholding, and synchronous
(Thomas et al., 2013), i.e. based on instructive cues to initiate
and stop modulation of brain activity. The feedback is usually con-
tingent, i.e. linked to the maintenance of the desired neurophysio-
logical state, and based on two classes such as rest and motor
imagery. Within such a framework, a BRI for motor rehabilitation
would, for example, rely on starting and stopping finger or arm
extension by a robotic orthosis on the basis of the classification
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output (Brauchle et al., 2015; Naros and Gharabaghi, 2015). Linear
and synchronous classifiers allow the straightforward calculation
of performance metrics such as the true positive rate (TPR) or true
negative rate (TNR), which equal the sensitivity and specificity of
the classifier, respectively. Common performance metrics
(Sokolova and Lapalme, 2009; Thomas et al., 2013; Thompson
et al., 2013) suggest that accuracy and speed of the classifier are
important goals. However, restorative BRIs can also be understood
as a form of neurofeedback training, i.e. they should induce the
operant conditioning of a specific brain state or modulation range.
In this respect, motivation and reinforcement learning are further
and perhaps even more important goals (Nijboer et al., 2010;
Hammer et al., 2012; Lorenz et al., 2014).

1.1. Classification accuracy

Balanced classification accuracy (CA), i.e. the average of TPR and
TNR, is the most common measure for assessing the performance
of classification algorithms (Thompson et al., 2013). For classical
assistive BRIs, which follow the goal to replace lost functions and
control external devices, maximizing classification accuracy is con-
sidered to be optimal, and the threshold (h) is selected accordingly
(Theodoridis and Koutroumbas, 2009). This rationale is also implic-
itly assumed to be valid for restorative BRIs, which aim at neuro-
feedback training and use-dependent plasticity. Within this
framework, a low classification accuracy is believed to result in
decreased signal-to-noise ratio of the feedback which may, in turn,
increase cognitive effort and reduce learning efficiency (Clark,
2006). From a learning perspective, however, the classification
accuracy indicates whether the reward is specific and sensitive.
We explored, therefore, a mathematical simulation based on a
Bayesian reinforcement learning model to find out which thresh-
olds are optimal for learning (Bauer and Gharabaghi, 2015b). This
model revealed that learning occurred earliest at the threshold of
maximum classification accuracy (hCA). The mathematical model-
ing indicated, moreover, that operant conditioning can be opti-
mized when an adaptation strategy for threshold selection is
applied in the course of the training (Bauer and Gharabaghi,
2015b). Such an adaptation strategy would need to change the
classifier threshold, i.e., difficulty level, of the feedback device to
challenge the participant in the course of the training. Moreover,
the provided feedback should retain its specificity and reward
trained actions rather than punish false ones (Bauer and
Gharabaghi, 2015b; Naros and Gharabaghi, 2015).

1.2. Zone of proximal development (ZPD)

This information-theoretical understanding, i.e. when learning
is achieved by processing the information content of the reward,
is supported and extended from the perspective of cognitive load
theory, where learning can occur at several difficulty levels as well.
The range of difficulty levels, where the challenge and ability of a
subject can be brought into alignment and where the subjects still
have sufficient cognitive resources for the learning effort, is
referred to as the ZPD (Schnotz and Kürschner, 2007). In that
regard, the range of difficulties where a subject may learn from a
neurofeedback task is not limited to the point of hCA. Instead, learn-
ing can occur over a range of thresholds (h), i.e. difficulty levels. We
have, therefore, suggested to interpret the classification accuracy
curve over thresholds (see Fig. 1), where a classification accuracy
above 50% is achieved, as indicative of the ZPD (Bauer and
Gharabaghi, 2015a), a perspective which is in line with the Baye-
sian reinforcement learning model (Bauer and Gharabaghi, 2015b).

1.3. Learning incentive

The information content of the feedback, i.e. whether the
reward is specific and sensitive, indicates the potential but not
the motivation for learning. In order to assess the instructional
efficiency of different thresholds within the ZPD, i.e. their influ-
ence on the motivation to learn, a combination of cognitive load
and expectancy-value theory would be necessary (Wigfield and
Eccles, 2000; Schnotz and Kürschner, 2007; Sherlin et al., 2011;
Lotte et al., 2013). More specifically: A low difficulty level corre-
sponds to a high true positive rate of the classifier and thus to a
high reward rate (see Fig. 1). Furthermore, the reward rate
depends not only on the difficulty h, but also on the subject’s
ability. The examiner can alter the reward rate only by changing
the threshold. The subject, however, can alter the reward rate by
increasing his/her ability, i.e. by learning, which in turn takes
effort. Applying the expectancy-value theory of motivation
(Wigfield and Eccles, 2000), the probability of actually investing
this effort for learning would be proportional to the expected
reward. Furthermore, learning requires an opportunity (O) to
learn. In this context, we suggest that, within the framework of
synchronous BRIs, every occasion on which the trained action is
initiated can be interpreted as a learning opportunity. In this
way, the learning incentive (I) can be expressed as proportional
to the change in a subject’s reward rate (R) per discrete repeti-
tion of the action (O):

I � DR
DO

To increase the incentive for learning in BRI tasks, the threshold
hI, which maximizes DR/DO, should therefore be determined.
Please note that this threshold (hI) is not necessarily identical to
the threshold (hCA) which maximizes classification accuracy.

1.4. Operationalization

In the present study, the development of a criterion for
detecting and optimizing hI was based on the following rationale.
Due to the contingent feedback and the cued trial structure of a
synchronous restorative BRI, the feedback returning to the sub-
ject in the course of a trial exhibits distinct patterns (see

Fig. 1. Performance measures of a neurofeedback task. This figure exemplifies the
evolution of the true positive rate or sensitivity (blue trace), the true negative rate
or specificity (red trace) and the balanced classification accuracy (black trace) for
different thresholds. The classification accuracy peaks at a distinct threshold (hCA).
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