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h i g h l i g h t s

� Effective connectivity and optimal network structure is essential for proper information processing in
the brain.

� Functional abnormalities of the brain are found to be associated with the pathological changes in con-
nectivity and network structures.

� Aim of the present study, was to explore the interictal network properties of EEG signals from tem-
poral lobe structures in the context of fronto-temporal lobe epilepsy by graph analysis tools.

a b s t r a c t

Objective: It is believed that effective connectivity and optimal network structure are essential for proper
information processing in the brain. Indeed, functional abnormalities of the brain are found to be associ-
ated with pathological changes in connectivity and network structures. The aim of the present study was
to explore the interictal network properties of EEG signals from temporal lobe structures in the context of
fronto-temporal lobe epilepsy.
Methods: To complete this aim, the graph characteristics of the EEG data of 17 patients suffering from
focal epilepsy of the fronto-temporal type, recorded during interictal periods, were examined and com-
pared in terms of the affected versus the unaffected hemispheres. EEG connectivity analysis was per-
formed using eLORETA software in 15 fronto-temporal regions (Brodmann Areas BAs 8, 9, 10, 11, 20,
21, 22, 37, 38, 41, 42, 44, 45, 46, 47) on both affected and unaffected hemispheres.
Results: The evaluation of the graph analysis parameters, such as ‘global’ (characteristic path length) and
‘local’ connectivity (clustering coefficient) showed a statistically significant interaction among side
(affected and unaffected hemisphere) and Band (delta, theta, alpha, beta, gamma). Duncan post hoc test-
ing showed an increase of the path length in the alpha band in the affected hemisphere with respect to
the unaffected one, as evaluated by an inter-hemispheric marker. The affected hemisphere also showed
higher values of local connectivity in the alpha band. In general, an increase of local and global graph the-
ory parameters in the alpha band was found in the affected hemisphere. It was also demonstrated that
these effects were more evident in drug-free patients than in those undergoing pharmacological therapy.
Conclusions: The increased measures in the affected hemisphere of both functional local segregation and
global integration could result from the combination of overlapping mechanisms, including reactive neu-
roplastic changes seeking to maintain constant integration and segregation properties.
Significance: This reactive neuroplastic mechanism seeking to maintain constant integration and segrega-
tion properties seems to be more evident in the absence of antiepileptic treatment.
� 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.

http://dx.doi.org/10.1016/j.clinph.2014.09.019
1388-2457/� 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

⇑ Corresponding author at: Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Via Val Cannuta, 247, 00166 Rome, Italy. Tel.: +39 06 52253767.
E-mail addresses: fabrizio.vecchio@uniroma1.it, fabrizio.vecchio@sanraffaele.it (F. Vecchio).

Clinical Neurophysiology 126 (2015) 1108–1116

Contents lists available at ScienceDirect

Clinical Neurophysiology

journal homepage: www.elsevier .com/locate /c l inph

http://crossmark.crossref.org/dialog/?doi=10.1016/j.clinph.2014.09.019&domain=pdf
http://dx.doi.org/10.1016/j.clinph.2014.09.019
mailto:fabrizio.vecchio@uniroma1.it
mailto:fabrizio.vecchio@sanraffaele.it
http://dx.doi.org/10.1016/j.clinph.2014.09.019
http://www.sciencedirect.com/science/journal/13882457
http://www.elsevier.com/locate/clinph


1. Introduction

Epilepsy is a common neurological disorder, characterized by a
sudden occurrence of paroxysmal neuronal firing. It is sometimes
accompanied (when several causes occur simultaneously, includ-
ing paroxysmal activity that is highly synchronized, sufficiently
prolonged in time and involves a critical neuronal assembly) by
clinically evident epileptic attack. It is the most frequently occur-
ring disease of the central nervous system, affecting approximately
1% of the world population. Despite enormous research efforts, the
pathogenesis of epilepsy has not completely been elucidated
(Timofeev and Steriade, 2004), which hampers both full under-
standing of the pathophysiology and subsequent treatment.

The clinical diagnosis of epilepsy is based on the criteria of the
International League Against Epilepsy (ILAE). A diagnostic interictal
electro-encephalogram (EEG) showing ‘interictal epileptiform dis-
charges’ (IEDs) is obtainable. Unfortunately, while visual EEG
inspection is highly specific as a diagnostic tool, it has a relatively
low sensitivity, since only 30–50% of patients have IEDs during
their first routine EEG (King et al., 1998). Even though this percent-
age increases with repeated EEG recordings, between 2% and 18%
of patients never display IEDs on their EEGs (Marsan and Zivin,
1970; Noachtar and Remi, 2009). To make matters worse, approx-
imately 0.5% of the healthy population shows IEDs that never lead
to a clinically evident epileptic attack (Robin et al., 1978; Gregory
et al., 1993). Thus, the development of an EEG measure expanding
the diagnostic yield of IEDs, whilst preserving high specificity,
would be highly valuable.

A relatively new concept in neuroscience is ‘‘functional connec-
tivity’’. Functional connectivity in human neuroscience refers to
the synchrony of activity in anatomically distinct but functionally
collaborating brain regions. For this reason, if two neuronal assem-
blies are highly correlated in their rhythmic firing activity over
time, they are considered functionally connected. This notion
refers to the statistical interdependencies (or synchronization)
between time series from different brain areas, as measured by
electroencephalography (EEG), magnetoencephalography (MEG),
or functional magnetic resonance imaging (fMRI). Synchronization
of neuronal discharges on one side may be pivotal for optimal brain
functioning (Varela et al., 2001). However, it can also reflect abnor-
mal dynamics of hyper-synchronous firing related to epilepsy
(Douw et al., 2010). Within this theoretical framework, focal epi-
lepsy is increasingly seen as a ‘network disorder’ (Kramer and
Cash, 2012; Richardson, 2012; Engel et al., 2013).

During the genesis of partial seizures (particularly temporal
lobe seizures), it has been observed that the EEG rhythms from
involved brain networks are characterized by increased synchroni-
zation culminating at the end with a clinical seizure (Lieb et al.,
1987; Duckrow and Spencer, 1992; Gotman and Levtova, 1996;
Le Van et al., 1998; Bartolomei et al., 2001, 2004, 2005; Schindler
et al., 2007). In contrast, few studies have investigated network
properties and functioning during the interictal period. An increase
of EEG synchrony has been described from cortical surface/grids
recordings (Schevon et al., 2007) or from intracerebral recordings
in mesial temporal lobe epilepsy (Bettus et al., 2008). In this con-
text, an approach to the characterization of complex networks is
the use of the ‘graph theory’ (Strogatz, 2001; Boccaletti and
Pecora, 2006). A graph is a representation of a network, which is
expressed by its nodes (‘vertices’) and connections (‘edges’).
Graphs can be described by several parameters and particularly
by a clustering coefficient (C) and characteristic path length (L).
The clustering coefficient is a measure for the local connectedness
of the graph, whereas the characteristic path length is an indicator
of overall connectedness. It has been shown that graphs with many
local connections and a few random long distance connections are

characterized by a high clustering coefficient and a short character-
istic path length (Watts and Strogatz, 1998). These networks,
which acts as intermediaries between an ordered and a random
organization, have been defined as ‘‘small world networks’’. Such
a topology is responsible for high local and global efficiency with
low energy and wiring costs (Achard and Bullmore, 2007). Neuro-
nal networks behave as a small world phenomenon, which is also
an optimal organization for time-varying dynamic synchronization
of neuronal activity among different brain regions (Lago-Fernandez
et al., 2000). Graph analysis of structural/anatomical (diffusion MRI
and cortical thickness correlation) and functional (fMRI signals and
MEG recordings) data have demonstrated a small world configura-
tion in the healthy human brain (Sporns et al., 2000, 2004; Stam,
2004; Sporns and Zwi, 2004; Salvador et al., 2005; Achard and
Bullmore, 2007; He et al., 2007; Hagmann et al., 2008; Gong
et al., 2009). These small-world properties would be responsible
for the high efficiency of the brain information processing, or the
efficiency of such an organization being related to cognitive perfor-
mance (van den Heuvel et al., 2009; Bassett et al., 2009). Along the
same lines, alterations of small-world properties have been
observed in several brain diseases, shedding light both on their
pathophysiology and their behavioral/cognitive consequences
(Reijneveld et al., 2007; Bassett et al., 2009; D’Amelio and
Rossini, 2012).

In the context of epilepsy, changes in network topology were
first described during the ictal period (Ponten et al., 2007;
Kramer et al., 2008, 2010; Schindler et al., 2008). More recently,
research investigations focused on the interictal period and
changes in the graph topology of EEG signals (Chavez et al.,
2010; Liao et al., 2010; Horstmann et al., 2010; Bernhardt et al.,
2011; Vaessen et al., 2012). Results are not homogeneous. Some
studies have reported an increase in clustering and a path length
shortening (Chavez et al., 2010; Horstmann et al., 2010;
Bernhardt et al., 2011). Others have found a decrease in these net-
work properties (Liao et al., 2010) or a decreased clustering and an
increased path length (Vaessen et al., 2012). These discrepancies
are probably related to different populations studied at different
times (i.e., initial or chronic epilepsies), conditions (i.e., under anti-
epileptic or drug-free conditions) and with different methodologi-
cal approaches.

To our knowledge, no previous report has investigated the
network’s properties during the interictal period in a source’s anal-
ysis from the EEG scalp recordings in patients with focal fronto-
temporal epilepsy. The aim of the present study was a proof of
concept for the use of graph theory in investigating the interictal
network properties of EEG signals—namely those from epileptic
temporal lobe structures—in the context of fronto temporal lobe
epilepsy. To this end, the graph characteristics of scalp EEG signals
recorded during interictal periods were examined and compared in
both hemispheres with respect to an inter-hemispheric marker of
healthy subjects.

A corollary endpoint of the present study was also to investigate
whether interictal EEGs from patients suffering from MTLE had dif-
fering graph characteristics in drug-free or in chronic antiepileptic
drugs treatment conditions.

2. Materials and methods

2.1. Participants

A dataset of 17 patients with focal fronto-temporal epilepsy
(divided according to the side of focus: 8 left and 9 right) and 48
age-matched healthy subjects was analyzed. Demographic data
of the patients are reported in Table 1. To obtain a more reliable
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