Contents lists available at ScienceDirect

Epilepsy & Behavior

journal homepage: www.elsevier.com/locate/yebeh

Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy

Sriram Ramgopal ^{a,b}, Sigride Thome-Souza ^{a,c}, Michele Jackson ^a, Navah Ester Kadish ^{a,i}, Iván Sánchez Fernández ^a, Jacquelyn Klehm ^a, William Bosl ^d, Claus Reinsberger ^{e,g,h}, Steven Schachter ^f, Tobias Loddenkemper ^{a,*}

^a Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA

^b Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

^c Psychiatry Department of Clinics Hospital of School of Medicine of University of Sao Paulo, Brazil

^d Department of Health Informatics, University of San Francisco School of Nursing and Health Professions, San Francisco, CA, USA

^e Edward B. Bromfield Epilepsy Center, Dept. of Neurology, Brigham and Women's Hospital, Boston, MA, USA

^f Department of Neurology, Harvard Medical School, Boston, MA, USA

^g Institute of Sports Medicine, Department of Exercise and Health, Faculty of Science, University of Paderborn, Germany

^h Institute of Sports Medicine, Faculty of Science, University of Paderborn, Warburger Str. 100, 33098 Paderborn, Germany

¹ Department of Neuropediatrics and Department of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany

A R T I C L E I N F O

Article history: Received 17 April 2014 Revised 4 June 2014 Accepted 10 June 2014 Available online 29 August 2014

Keywords:

Accelerometry Artificial neural network Automated seizure detection Closed-loop methods ECG-based seizure detection EEG-based seizure detection Fourier Higher-order spectra Markov modeling Support vector machine

ABSTRACT

Nearly one-third of patients with epilepsy continue to have seizures despite optimal medication management. Systems employed to detect seizures may have the potential to improve outcomes in these patients by allowing more tailored therapies and might, additionally, have a role in accident and SUDEP prevention. Automated seizure detection and prediction require algorithms which employ feature computation and subsequent classification. Over the last few decades, methods have been developed to detect seizures utilizing scalp and intracranial EEG, electrocardiography, accelerometry and motion sensors, electrodermal activity, and audio/video captures. To date, it is unclear which combination of detection technologies yields the best results, and approaches may ultimately need to be individualized. This review presents an overview of seizure detection and related prediction methods and discusses their potential uses in closed-loop warning systems in epilepsy.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Epilepsy is one of the most common neurological disorders and occurs with an incidence of 68.8/100,000 person-years [1]. The ageadjusted incidence of epilepsy is estimated to be 44/100,000 personyears [2]. Despite the introduction of new antiepileptic drugs in the last decades, one-third of people with epilepsy continue to have seizures despite treatment [3]. However, even when seizures are well controlled, self-reported quality of life is significantly lowered by the anxiety associated with the unpredictable nature of seizures and the consequences therefrom [4].

Some of the difficulties in managing treatment-refractory epilepsy can be ameliorated by the ability to detect clinical seizures. This information might be useful both in developing accurate seizure diaries and in providing therapies during times of greatest seizure susceptibility. The ability to rapidly and accurately detect seizures could promote therapies aimed at rapidly treating seizures. The capability to detect seizures early and anticipate their onset prior to presentation would provide even greater advantages. These early detection and prediction systems might be able to abort seizures through

http://dx.doi.org/10.1016/j.yebeh.2014.06.023

1525-5050/© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Review

CrossMark

Abbreviations: SVM, support vector machine; ANN, artificial neural network; PCA, principal component analysis; SEN, sensitivity; SPEC, specificity; FPR, false-positive rate; PPV, positive predictive value.

^{*} Corresponding author at: Harvard Medical School, Division of Epilepsy and Clinical Neurophysiology, Fegan 9, Children's Hospital Boston, 300 Longwood Ave, Boston, MA 02115, USA. Tel.: +1 617 355 2443; fax: +1 617 730 0463.

E-mail address: tobias.loddenkemper@childrens.harvard.edu (T. Loddenkemper).

Table 1 Selected seizure detection systems.

Author, year	Measuring device/seizures detected	Detection algorithm	Results
<i>Electroencephalography/electrocorticography</i>			
Webber, 1996 [5]	EEG (24-40 channels)/seizures not stated	ANN classification system	SEN of 76% and FPR of 1 event/h
Pradhan, 1996 [6]	EEG (8 channels)/seizures not stated	Wavelet transformation feature acquisition, ANN classification	SEN of 97% and SPEC of 89.5%
Gabor, 1998 [7]	EEG (8 channels)/seizures not stated	Self-organizing neural network with unsupervised training	SEN of 92.8% and FPR of 1.35 events/h
Wilson, 2004 [8]	EEG (8-32 channels)/seizures not stated	Combined algorithm (utilizes matching pursuit, small neural networks,	SEN of 76% and FPR of 0.11 events/h
		and clustering algorithm)	
Wilson, 2005 [9]	EEG (single channel selected)/CPS, secondary GS and primary GS	Used a trained probabilistic neural network for rapid detection of	SEN of 89% and FPR of 0.56 events/h
		seizures	
Alkan, 2005 [10]	EEG (4 channels)/absence seizures	Comparison of linear regression systems and ANN classification systems	ANN-based systems found to be greater. ANN-based system
			provided greater accuracy compared with linear regression
D'Alessandro, 2005 [11]	Intracranial EEG/seizures not stated	Genetic algorithm for signal processing, probabilistic neural network	100% prediction of seizures within 10 min prior to onset
		for classification	
Arabi, 2006 [12]	EEG/neonatal seizures	Used linear correlation feature selection methods and back propagation	SEN of 91% and FPR of 1.17 events/h
		neural network for classification. Used in detection of neonatal seizures	
Casson, 2007 [13]	Ambulatory EEG	Continuous wavelet transform	Over 90% of spike detection
Chan, 2008 [14]	Intracranial EEG/PS	SVM system	SEN of 80–98%, FPR of 38%
Netoff, 2009 [15]	EEG (6 channels)/PS	Cost-sensitive SVM system	SEN of 77.8%, no false positives detected
Chua, 2009 [16]	EEG/PS	Data processing by higher-order spectra analysis followed by	Accuracy of 92–93%
		classification by the Gaussian mixture model or SVM	
Mirowski, 2009 [17]	EEG/PS	Variable feature extraction methods used followed by patient-specific	Convolutional networks combined with wavelet coherence yielded
		machine learning-based classifiers	sensitivity of 71% and no false positives
Sorensen, 2010 [18]	EEG (3 channels)/GTCS, SPS, CPS	Features classified by matching pursuit algorithm and classified by SVM	SEN of 78–100 and FPR of 0.16–5.31 events/h
Chisci, 2010 [19]	EEG (multichannel)/focal seizures	Least-squares parameter estimator for extraction followed by SVM	SEN of 100%
		classification	
Peterson, 2011 [20]	EEG (single channel)/absence seizures	Wavelet transform followed by SVM classification used to detect absence	SEN of 99.1% and PPV of 94.8%
		seizures using single-channel EEG	
Temko, 2011 [21]	EEG (8 bipolar)/neonatal seizures	Fast Fourier transform used for feature extraction followed by SVM	SEN adjustable, with 89% SEN yielding one false detection/h
		classification. Used to detect neonatal seizures	
Acharya, 2011 [22]	EEG/seizures not stated	Higher-order spectra-based feature extraction followed by SVM	Detection accuracy of 98.5%
Kharbouch, 2011 [23]	Intracranial EEG/focal epilepsy	Multistep feature extraction system followed by SVM classifier,	Detected 97% of seizures, FPR of 0.6 events/day
		individualized for patients	
Liu, 2012 [24]	Intracranial EEG/GTCS, SPS, CPS	Wavelet decomposition-based feature extraction followed by SVM	SEN of 94.5% and SPEC of 95.3%
		classification	
Xie, 2012 [25]	EEG (6 channels)/focal seizures, others not stated	Feature extraction by wavelet-based sparse functional linear model and	Has 99–100% classification accuracy
		1-NN classification method	
Direito, 2012 [26]	EEG (multichannel)/focal seizures	Markov modeling classification system. Identified four states - preictal,	Point-by-point accuracy of 89.3%
		ictal, postictal, and interictal	
Rabbi, 2012 [27]	Intracranial EEG/GTCS, SPS, CPS	Used fuzzy algorithms for feature extraction for classification	SEN of 95.8% and FPR of 0.26 events/h
Implantea aavisory system			CENT - 5 CEO(1000/
COOK, 2013 [28]	intracraniai implanted device/partial-onset selzure	Cluster computing system at Neurovista (one algorithm for each patient)	SEN 0I 65%-100%
Flectromyography			
Conradsen 2010 [29]	Features extracted from surface electromyography acceleration	Classification based on SVM	SEN of 91–100% and SPEC of 100%
	and angular velocity/seizure-like movements performed by healthy		
	volunteers		
Conradsen, 2012 [30]	Electromyography and motion sensor features/motor seizures.	Discrete wavelet transformation/wavelet packet transform techniques	Evaluated healthy subjects simulating seizures. SEN of 91–100% and
	seizure-like movements performed by healthy volunteers	used to extract features. SVM classification system	SPEC of 100%

Download English Version:

https://daneshyari.com/en/article/6012142

Download Persian Version:

https://daneshyari.com/article/6012142

Daneshyari.com