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A seizure prediction algorithm is proposed that combines novel multivariate EEG features with patient-
specific machine learning. The algorithm computes the eigenspectra of space-delay correlation and covari-
ance matrices from 15-s blocks of EEG data at multiple delay scales. The principal components of these
features are used to classify the patient's preictal or interictal state. This is done using a support vector

machine (SVM), whose outputs are averaged using a running 15-minute window to obtain a final prediction

Keywords:

Epilepsy

Seizure prediction
Multivariate features
Electroencephalogram
Correlation structure
Machine learning
Eigenvalues

Principal components
Support vector machines

score. The algorithm was tested on 19 of 21 patients in the Freiburg EEG data set who had three or more
seizures, predicting 71 of 83 seizures, with 15 false predictions and 13.8 h in seizure warning during
448.3 h of interictal data. The proposed algorithm scales with the number of available EEG signals by discov-
ering the variations in correlation structure among any given set of signals that correlate with seizure risk.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Epilepsy affects approximately 1% of the general population [1].
Epilepsy puts patients at higher risk for injuries. Seizures can cause
many injuries including falls, submersion injuries, burns, and many
others. These happen because seizures can be sudden and occur
without warning, leaving the patient unable to protect him- or
herself. A review of epilepsy-related injuries found that patients with
epilepsy, especially children, are at higher risk for submersion injuries
[2]. Epilepsy also results in a higher risk for fractures, burns and motor
vehicle accidents. If seizures can be reliably predicted and a preictal
state can be identified with high sensitivity and specificity, it could
help significantly in reducing these injuries.

Research into seizure prediction has focused on several types of
features that discriminate between interictal (period of time between
seizures) and preictal (period of time immediately before a seizure)
states. These include univariate features, such as the power spectral
density or autoregressive modeling coefficients of single electroen-
cephalogram (EEG) channels, as well as bivariate features that mea-
sure pairwise correlations between EEG channels, such as maximum
cross correlation or phase synchrony [3,4]. Comparisons of feature ex-
traction techniques have indicated greater discriminability for bivariate
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compared to univariate features, with similar discriminability for both
linear and nonlinear bivariate features [3].

In addition to the question of feature discriminability is the ques-
tion of how best to combine features to generate accurate and reliable
seizure predictions. Recent machine learning approaches using high-
dimensional feature vectors have demonstrated significant improve-
ments over approaches of retrospectively selecting univariate or bivariate
features [5-8].

As technology improves and the number and quality of available
EEG channels increase, it will become increasingly important to
develop a scalable approach for signal analysis that extracts all the
available useful information. The high levels of phenomenological
variation of brain dynamics, both within a single patient over time
and between different patients, imply the need to discover patterns
that potentially involve all the available EEG channels across a range
of temporal scales.

These considerations motivate our algorithm, which generalizes and
extends approaches for feature selection among multiple bivariate sig-
nal coherence features into an approach for feature extraction from a
multivariate representation of correlations across channels and time.
Feature extraction is based on the eigenspectra of space-delay correla-
tion and covariance matrices, which are computed from multichannel
EEG signals at multiple relative time delays. These eigenspectra com-
prise the spatiotemporal correlation structure of the EEG signals. We
hypothesize that preictal periods of increased seizure risk are reflected
in changed brain dynamics that can be detected by changes in the
spatiotemporal correlation structure. We describe in detail the feature
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extraction, machine learning, and seizure prediction components of our
algorithm and demonstrate its performance on the Freiburg EEG data-
base, with comparisons to previously published results.

2. Methods
2.1. EEG database and patient characteristics

Our seizure prediction algorithm was evaluated on the Freiburg EEG
database, which contains the intracranial EEG (iEEG) recordings from
21 patients suffering from medically intractable focal epilepsy. The
data were recorded while the patients were undergoing invasive
pre-surgical epilepsy monitoring at the Epilepsy Center of the
University Hospital of Freiburg, Germany [9]. The data consist of six
channels (i.e., recordings from six different electrodes) sampled at
256 Hz. Three of these are focal channels (located near the epileptic
focus), and three are extrafocal. The electrodes were referenced to a
contact located in a brain structure with lowest epileptic activity. The
data records for each patient are divided into ictal and interictal records.
The ictal records contain epileptic seizures notated by experienced
epileptologists, with at least 50 min of preictal data preceding each sei-
zure. The interictal records contain approximately 24 h of recordings
without seizure activity, at least 1 h removed from the nearest seizure.
The median time period between the last seizure and the interictal data
set was 5 h and 18 min, and the median time period between the
interictal data set and the first following seizure was 9 h and 36 min.
The seizures occurred spontaneously and at different times of the day.
Antiepileptic medication was reduced from usual levels in a majority
of the patients; however, the types and levels of medications were not
identical across patients as these treatments had to be adapted to
their individual clinical needs.

Three or more seizures were recorded for 19 of the 21 patients.
Our algorithm was evaluated only on these 19 patients to ensure
that at least two other preictal periods from the same patient could
be used by the algorithm's machine learning (i.e., model estimation)
step for each preictal period that it was evaluated on. The epileptic
focus was located in neocortical brain structures in 10 of these 19
patients, in the hippocampus in seven, and in both brain areas in two.
Table 1 lists many of the patient and database characteristics. For
more extensive information about the data set, see [9].

The data records were preprocessed via bandpass filtering between .5
and 120 Hz and a notch filter to remove line noise at 50 Hz. Finally, each
channel was normalized over a patient's entire data set into standard

Table 1
Patient and EEG database characteristics.

units of zero mean and unit variance to control for different power levels
between the channels.

2.2. Feature extraction

The feature extraction approach finds correlation patterns, both
within and across EEG channels that exhibit the most significant
changes over time. The correlation patterns are derived from the
eigenspectra of the space-delay correlation and covariance matrices,
which are obtained from multichannel EEG signals at multiple rela-
tive time delays, using several delay scales. These spatiotemporal cor-
relation structure features are well suited to a problem in which it is
unknown a priori which sets of correlations across space and time are
predictive of seizures. The components of spatiotemporal correlation
structure that explain most of the data variance provide the basis
set from which a mapping to seizure predictions is obtained using
machine learning. This feature extraction approach was initially
described in an earlier version of the current work [10] and has
since been applied to the analysis of cardiopulmonary correlation
structure for apnea prediction in preterm infants [11]. Table 2 sum-
marizes the parameters and variables used in the feature extraction
process. High-dimensional feature vectors are extracted from space-
delay covariance and correlation matrices, computed from 15-s
blocks of data at multiple delay scales. The term space refers to the
spatial array of EEG sensor channels, and the term delay refers to
the set of time delays applied to each channel. At each delay scale,
these matrices contain covariance and correlation coefficients com-
puted from the product set of EEG channels and time delays defined
for that scale.

Let Z(;, be a set of signals for the jth block of data, where ¢(j) is the
time stamp for the jth block in units of seconds. The start of each suc-
cessive 15-s block is contiguous with the end of the preceding block.
Z(j) has dimensionality (nsxn.) where ng is the number of samples
per 15-s block (n;=3840) and n. is the number of channels (n.=6).
Xj« is a set of time-delayed multichannel signals,

Xic = (2o e r ) M)

where Ty is the ith time delay at the kth delay scale. Xj, has dimen-
sionality (ngxncng). The spacing of time delays depends on the delay
scale: Ty = (i—1)6ks, with§; = &, 6, = &, 63 = 1, and 6, = 1. Multiple
delay scales are used so that the spatiotemporal correlation structure

Patient Sex Age Seizure type H/NC Electrode types

# of seizures

# of seizures per day Interictal duration (h) # of inter. intervals

1 F 15 SP, CP NC g, 5
2 M 38 SP, CP, GTC H d 3
3 M 14 SP, CP NC g 5
4 F 26 SP, CP, GTC H dgs 5
5 F 16 SP, CP, GTC NC g s 5
6 F 31 CP, GTC H dgs 3
7 F 42 SP, CP, GTC H d 3
9 M 44 CP, GTC NC g s 5
10 M 47 SP, CP, GTC H d 5
11 F 10 SP, CP, GTC NC g 4
12 F 42 SP, CP, GTC H dgs 4
14 F 41 CP, GTC H and NC d,s 4
15 M 31 SP, CP, GTC H and NC d,s 4
16 F 50 SP, CP, GTC H d,s 5
17 M 28 SP, CP, GTC NC s 5
18 F 25 SP, CP NC S 5
19 F 28 SP, CP, GTC NC S 4
20 M 33 SP, CP, GTC NC d,s 5
21 M 13 SP, CP NC S 5

6.3 24 1
2.8 24 2
0.6 24 1
0.4 24 1
1.7 24 3
0.9 24 1
0.2 25 1
1.6 24 2
1.1 24 1
0.6 24 1
1.0 25 1
6.3 24 5
0.4 24 1
4.5 24 2
1.0 24 1
6.6 25 1
3.6 24 3
5.1 24 1
0.2 24 2

Seizure types: simple partial (SP), complex partial (CP), and generalized tonic-clonic (GTC). Seizure origin: hippocampal (H) and neocortical (NC). Electrodes: grid (g), strip (s),

depth (d).
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