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Background  and  purpose:  Novel  approaches  applying  machine-learning  methods  to  neuroimaging  data
seek to  develop  individualized  measures  that  will aid  in  the  diagnosis  and  treatment  of  brain-based
disorders  such  as  temporal  lobe  epilepsy  (TLE).  Using  a large  cohort  of epilepsy  patients  with  and  without
mesial  temporal  sclerosis  (MTS),  we sought  to automatically  classify  MTS  using  measures  of  cortical
morphology,  and  to further  relate  classification  probabilities  to measures  of disease  burden.
Materials  and methods:  Our sample  consisted  of high-resolution  T1 structural  scans  of  169  adults  with
epilepsy  collected  across  five  different  1.5  T and four different  3 T scanners  at UCLA.  We applied  a multiple
support  vector  machine  recursive  feature  elimination  algorithm  to morphological  measures  generated
from  FreeSurfer’s  automated  segmentation  and  parcellation  in order  to  classify  Epilepsy  patients  with
MTS  (n =  85)  from  those  without  MTS  (N =  84).
Results:  In  addition  to hippocampal  volume,  we found  that  alterations  in  cortical  thickness,  surface  area,
volume  and  curvature  in  inferior  frontal  and  anterior  and  inferior  temporal  regions  contributed  to a
classification  accuracy  of up to 81%  (p  =  1.3 ×  10−17) in  identifying  MTS.  We  also  found  that  MTS  classi-
fication  probabilities  were  associated  with  a  longer  duration  of  disease  for epilepsy  patients  both  with
and  without  MTS.
Conclusions:  In addition  to  implicating  extra-hippocampal  involvement  of  MTS,  these  findings  shed  fur-
ther  light  on  the  pathogenesis  of  TLE  and  may  ultimately  assist  in the  development  of  automated  tools
that  incorporate  multiple  neuroimaging  measures  to  assist  clinicians  in  detecting  more  subtle  cases  of
TLE  and  MTS.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

During the diagnostic workup of epilepsy, the identification of
major structural abnormalities, including mesial temporal sclero-
sis (MTS), is critical for guiding clinical decision-making. In the
past two decades, more advanced imaging acquisition and anal-
ysis methods have been used to detect more subtle morphological
abnormalities in epilepsy patients. However, a majority of these
studies identify a group-level difference, which has little clinical
utility. Therefore, diagnosis of MTS  and other structural abnor-
malities continues to be based on visual inspection by trained

Abbreviations: TLE, temporal lobe epilepsy; MTS, mesial temporal sclerosis;
VBM, voxel based morphometry; SVM, support vector machine; RFE, recursive fea-
ture elimination; ROC, receiver operator curve.
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neuroradiologists. More advanced machine-based learning meth-
ods can be applied to individual subjects and have significant
potential for assisting with diagnosis and predicting treatment
response in individuals with epilepsy and other neurological ill-
nesses.

The majority of neuroimaging research has focused on temporal
lobe epilepsy (TLE), which is the most prevalent form of medi-
cally intractable epilepsy (Engel, 1996). The pathologic finding of
MTS  exists in up to 65% of cases of TLE (Babb et al., 1984). MTS  is
characterized histologically by cellular loss and hippocampal reor-
ganization and is often identified on MRI  by hippocampal atrophy
and signal abnormalities (Berkovic et al., 1991).

A multitude of prior neuroimaging studies have examined
whole-brain differences in cortical morphology between patients
with TLE and controls using both voxel based morphometry (VBM)
and cortical thickness methods. As reviewed by Keller and Roberts
(2008), VBM studies have found the largest effects in nearby ipsilat-
eral medial temporal cortex, as well as more widespread effects in
regions including the thalamus and frontal and parietal lobes. The
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findings of more widespread alterations in cortical morphology that
extend beyond the hippocampus are consistent with TLE’s comor-
bid deficits in executive, intellectual and language functioning
(Oyegbile et al., 2004). More recently, using methods that recon-
struct the cortical surface to more precisely measure gray matter
structure, researchers found up to 30% reductions in cortical thick-
ness bilaterally in multiple frontal, temporal and occipital regions
in TLE patients with MTS  compared to controls (Lin et al., 2007;
Bernhardt et al., 2010; Kemmotsu et al., 2011). These findings are
present in TLE patients with and without MTS  but have been shown
to be stronger in patients with MTS  (Labate et al., 2011). Addition-
ally, these methods allow for measurements of cortical folding and
complexity, which have also been reported to be abnormal in indi-
viduals with TLE and MTS, particularly in ipsilateral temporal and
frontal cortices (Voets et al., 2011; Alhusaini et al., 2012).

These computer-based methods have improved our under-
standing of the neurobiology of TLE. However, relative to the
classic findings of hippocampal atrophy and T2 signal abnormali-
ties, the alterations are more subtle, distributed and variable across
patients, which makes visual assessment by neuroradiologists a
more challenging task. Additionally, in order for the methods to
have clinical utility they need to be able to be applied to individ-
ual subjects, yet these approaches generally report differences at
the group level. Thus, an automated tool that incorporates all of
these findings into a single metric that predicts MTS  or TLE has
more promise in supplementing the visual analysis of neuroradiol-
ogists. Machine learning approaches seek to incorporate multiple
data points in order to build a model that can make predictions
in future data sets. Support vector machines (SVM) are a class of
machine learning algorithms that are well suited for neuroimaging
data as they are fast, flexible and can be readily automated. They
have been studied extensively in computer science and have been
applied to neuroimaging data from a variety of neurological dis-
eases including Alzheimer’s disease (Klöppel et al., 2008), autism
spectrum disorder (Ecker et al., 2010) and ADHD (Colby et al., 2012).

A few prior investigations have applied machine-learning meth-
ods to TLE. Using a linear discriminant analysis McDonald et al.
(2008) showed that lateral temporal cortical thickness could signif-
icantly discriminate TLE patients from controls with 74% accuracy.
By focusing solely on quantification of hippocampal volume and T2
signal changes, computer-aided methods were shown to improve
detection of MTS  by 28% compared to visual analysis alone (Coan
et al., 2014). Using a voxel-based approach for white and gray mat-
ter segmentation as well as voxel based DTI measures, Focke et al.
(2012) were able to distinguish TLE with MTS  from controls with
greater than 88% accuracy. Cantor-Rivera et al. (2015) used multi-
ple measures, including quantitative regional T1/T2 and DTI values
to classify TLE patients from controls with similarly high classifica-
tion accuracies. Another recent study (Bernhardt et al., 2015) used
a more advanced classification approach that identified multiple
TLE subtypes showing distinct patterns of structural abnormalities
that were further related to surgical outcomes.

In this study, we applied an SVM algorithm to measures of brain
morphology, including cortical thickness, volume, and curvature,
generated from FreeSurfer’s automated segmentation and parcel-
lation to a large sample of epilepsy patients at UCLA in order to
identify MTS. Additionally, we related MTS  classification scores
with clinical measures, including age of onset, disease duration
and seizure frequency in order to glean further insights into the
pathogenesis and natural course of TLE and MTS.

2. Materials and methods

2.1. Subjects

Our sample consisted of high-resolution T1 structural scans
of 169 adults scanned under UCLA’s epilepsy protocol (IRB #

11-001678). There were a total of 848 individuals scanned across
five different 1.5 T scanners (Avanto, Signa Genesis, Signa HD, two
Sonata) and four different 3 T scanners (Verio, Skyra and two Trio-
Tim) under UCLA’s epilepsy protocol between April 2003 and May
2013. In order to be included in our study, individuals had to have
a clinical diagnosis of epilepsy, either with or without MTS, and
without evidence of other major structural abnormalities includ-
ing isolated cortical dysplasia, tuberous sclerosis, leukomalacia,
glioma, gray matter heterotopia or encephalomalacia as verified
by a board certified neuroradiologist (N.S.). There were a total of 84
patients that had a clinical diagnosis of epilepsy without evidence of
any structural abnormalities and which served as the control group.
There were a total of 85 patients that had a diagnosis of epilepsy
with left, right or bilateral MTS  without any other structural abnor-
malities. Of the patients with MTS, 42 had left MTS, 35 had right MTS
and 8 had bilateral MTS  (Three of which were described to have left
greater than right MTS). There were no significant differences (p >
0.05) between the control and MTS  groups when comparing age,
scanner strength (1.5 T vs. 3 T) and data resolution as measured by
voxel volume (See Table 1 for group characteristics).

A retrospective chart review was  done on all 169 patients
in order to determine age of seizure onset, duration of disease
and seizure frequency. In estimating seizure frequency, the aver-
age numbers of seizures were taken from chart reviews and/or
a standardized clinical assessment written for each patient being
evaluated by UCLA Adult Epilepsy Program. In cases where patients
had multiple types of seizures, the total seizure frequency was
summed across different seizure types. There were differences
between groups for demographics including age of seizure onset,
duration of disease, and seizure frequency, such that patients with
MTS  had an earlier onset of disease (p = 0.001) and disease duration
(p = 0.0001) but lower seizure frequency (p = 0.01) than patients
without MTS  (Table 1).

2.2. MRI  preprocessing

The basic T1-weighted anatomical MPRAGE sequence used
across different scanners was  as follows: TR/TE/TI = 1900/2.89/
900 ms,  9◦ flip angle, 0.98 mm 0.98 mm  1.0–1.8 mm slice thickness.
The exact parameters varied slightly across scanners. For additional
details regarding acquisition parameters please see Lin et al. (2007),
which used an overlapping dataset. The T1-weighted anatomical
MRI  scans were processed with FreeSurfer’s recon-all processing
pipeline for cortical reconstruction and volumetric segmentation
(Fischl and Dale, 2000; Fischl, 2004) (software freely available
at http://surfer.nmr.mgh.harvard.edu/). This method automatically
generates reliable volume and thickness segmentations of white
matter, gray matter, and subcortical volumes. The streamlined
pipeline included removal of non-brain tissue, Tailarach transfor-
mations, segmentation of subcortical white and deep gray matter
regions, intensity normalization and atlas registration. After these
steps, a mesh model of the cortical surface was generated and
the cortical surface was parcellated into 34 cortical regions based
on gyral and sulcal landmarks for each hemisphere according to
the Desikan–Killiany atlas (Desikan et al., 2006). Importantly, it
has been shown that the normalization process performed by
FreeSurfer has good test–retest reliability across field strengths and
scanner manufacturers (Han et al., 2006; Pfefferbaum et al., 2012).

Nine measures for each of the 34 cortical regions were calcu-
lated per hemisphere. These measures consisted of surface area,
gray matter volume, average cortical thickness, cortical thickness
standard deviation, cortical mean curvature, Gaussian curvature,
cortical folding index, cortical curvature index and number of ver-
tices. Additionally, three morphological measures (regional volume
in mm3, regional voxel intensity mean, and regional voxel inten-
sity standard deviation) were calculated for 45 non-cortical regions.
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