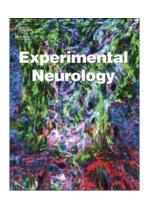
Accepted Manuscript

Increased precursor microRNA-21 following status epilepticus can compete with mature microRNA-21 to alter translation

Kayam Chak, Biswajoy Roy-Chaudhuri, Hak Kyun Kim, Kayla C Kemp, Brenda E Porter, Mark A Kay


PII: S0014-4886(16)30306-5

DOI: doi: 10.1016/j.expneurol.2016.10.003

Reference: YEXNR 12412

To appear in: Experimental Neurology

Received date: 19 May 2016 Revised date: 16 September 2016 Accepted date: 6 October 2016

Please cite this article as: Chak, Kayam, Roy-Chaudhuri, Biswajoy, Kim, Hak Kyun, Kemp, Kayla C, Porter, Brenda E, Kay, Mark A, Increased precursor microRNA-21 following status epilepticus can compete with mature microRNA-21 to alter translation, *Experimental Neurology* (2016), doi: 10.1016/j.expneurol.2016.10.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Increased precursor microRNA-21 following status epilepticus can compete with mature microRNA-21 to alter translation

Kayam Chak^{a,#}, Biswajoy Roy-Chaudhuri^{b,1,#}, Hak Kyun Kim^b, Kayla C Kemp^b, Brenda E Porter^{a,*,2}, Mark A Kay^{b,*}

^a Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA

ABSTRACT:

MicroRNA-21 (miR-21) is consistently up-regulated in various neurological disorders, including epilepsy. Here, we show that the biogenesis of miR-21 is altered following pilocarpine status epilepticus (SE) with an increase in precursor miR-21 (pre-miR-21) in rats. We demonstrate that pre-miR-21 has an energetically favorable site overlapping with the miR-21 binding site and competes with mature miR-21 for binding in the 3'UTR of *TGFBR2* mRNA, but not *NT-3* mRNA *in vitro*. This binding competition influences miR-21-mediated repression *in vitro* and correlates with the increase in *TGFBR2* and decrease in *NT-3* following SE. Polysome profiling reveals co-localization of pre-miR-21 in the ribosome fraction with translating mRNAs in U-87 cells. The current work suggests that pre-miR-21 may post-transcriptionally counteract miR-21-mediated suppression following SE and could potentially lead to prolonged TGF-β receptor expression impacting epileptogenesis. The study further supports that the ratio of the pre to mature miRNA may be important in determining the regulatory effects of a miRNA gene.

^b Department of Pediatrics and Genetics, Stanford University, Stanford, CA, USA

[#] Co-first author, * Co-Senior author

^{1.} BRC present address: Adaptive Biotechnologies, 329 Oyster Point Blvd, Ste 100, South San Francisco, CA 94080

^{2.} To whom correspondence should be addressed

Download English Version:

https://daneshyari.com/en/article/6016849

Download Persian Version:

https://daneshyari.com/article/6016849

<u>Daneshyari.com</u>