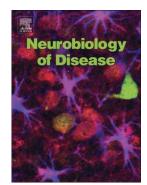
Accepted Manuscript

The interneuron energy hypothesis: implications for brain disease


Oliver Kann

PII:

S0969-9961(15)30025-5 DOI: doi: 10.1016/j.nbd.2015.08.005 Reference: **YNBDI 3571**

To appear in: Neurobiology of Disease

Received date: Revised date: Accepted date: 27 March 2015 22 July 2015 12 August 2015

Please cite this article as: Kann, Oliver, The interneuron energy hypothesis: implications for brain disease, Neurobiology of Disease (2015), doi: 10.1016/j.nbd.2015.08.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

The interneuron energy hypothesis: implications for brain disease

Oliver Kann^{a,b*}

^aInstitute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany ^bInterdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany

Running title:	Fast-spiking interneurons in disease
[*] Correspondence to:	Dr. Oliver Kann, Institute of Physiology and Pathophysiology,
	University of Heidelberg, Im Neuenheimer Feld 326, D-69120
	Heidelberg, Germany
	Phone: 0049.(0)6221.544560, FAX: 0049.(0)6221.546364
	E-mail address: oliver.kann@physiologie.uni-heidelberg.de
~	
Submission	SI: Mitochondria & Brain, Neurobiology of Disease

Submission	SI: Mitochondria & Brain, Neurobiology of Disease
Number of words:	13.644 (total)
Number of references:	204
Number of figures and tables:	2 figures, 1 table

Abbreviations:

ATP, adenosine-5'-triphosphate; EPSP, excitatory postsynaptic potential; fMRI, functional magnetic resonance imaging; GABA, gamma-aminobutyric acid; GAT, Na⁺-/Cl⁻-dependent GABA transporter; IPSP, inhibitory postsynaptic potential; GAD, glutamic acid decarboxylase; NO, nitric oxide; pO₂, partial oxygen pressure; PV+, parvalbumin-positive; PGC-1alpha, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; ROS, reactive oxygen species; VGAT, vesicular GABA transporter

Acknowledgements:

The author thanks Andrea Lewen for text editing assistance. This work was funded by the German Research Foundation (DFG) within the Collaborative Research Center (SFB) 1134.

Conflict of interest:

The author declares that he has no conflict of interest.

Download English Version:

https://daneshyari.com/en/article/6021363

Download Persian Version:

https://daneshyari.com/article/6021363

Daneshyari.com