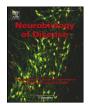
ARTICLE IN PRESS

YNBDI-03038; No. of pages: 11; 4C: 3, 4, 5, 6, 7, 8, 9, 10


Neurobiology of Disease xxx (2013) xxx-xxx

Contents lists available at ScienceDirect

Neurobiology of Disease

journal homepage: www.elsevier.com/locate/ynbdi

- Efficient derivation of cortical glutamatergic neurons from human
- pluripotent stem cells: A model system to study neurotoxicity in
- ₃ Alzheimer's disease[☆]
- Tandis Vazin ^{a,b,c,h}, K. Aurelia Ball ^{d,h}, Hui Lu ^{c,e,h}, Hyungju Park ^{c,e,h}, Yasaman Ataeijannati ^{f,h}, Teresa Head-Gordon ^{a,b,d,g,h}, Mu-ming Poo ^{c,e,h}, David V. Schaffer ^{a,b,c,h,*}

Q5 Q4 Q3

- ^a The Department of Chemical and Biomolecular Engineering, USA
- ^b The Department of Bioengineering, USA
- ^c Helen Wills Neuroscience Institute, USA
- ^d Graduate Group in Biophysics, USA
- 10 e Division of Neurobiology, Department of Molecular and Cell Biology, USA
- 1 f Department of Molecular and Cell Biology, USA
- 12 g Department of Chemistry, USA
- 13 h University of California, Berkeley, CA 94720, USA

14

15

ARTICLE INFO

16 Article history:

- 17 Received 19 March 2013
- 18 Revised 19 July 2013
- 19 Accepted 1 September 2013
- 20 Available online xxxx

23

- 24 Keywords:25 Cortical
- 26 Glutamatergic
- 27 Neuron
- 28 Human
- 29 Pluripotent
- 30 Stem cell
- 31 Amyloid beta
- 32 Alzheimer's disease 33 In vitro model

ABSTRACT

Alzheimer's disease (AD) is among the most prevalent forms of dementia affecting the aging population, and 34 $pharmacological\ the rapies\ to\ date\ have\ not\ been\ successful\ in\ preventing\ disease\ progression.\ Future\ the rapeutic\ 35$ efforts may benefit from the development of models that enable basic investigation of early disease pathology. In 36 particular, disease-relevant models based on human pluripotent stem cells (hPSCs) may be promising ap- 37 proaches to assess the impact of neurotoxic agents in AD on specific neuronal populations and thereby facilitate 38 the development of novel interventions to avert early disease mechanisms. We implemented an efficient paradigm to convert hPSCs into enriched populations of cortical glutamatergic neurons emerging from dorsal fore- 40 brain neural progenitors, aided by modulating Sonic hedgehog (Shh) signaling. Since AD is generally known to 41 be toxic to glutamatergic circuits, we exposed glutamatergic neurons derived from hESCs to an oligomeric pre- 42 fibrillar forms of A β known as "globulomers", which have shown strong correlation with the level of cognitive $\ 43$ deficits in AD. Administration of such Aβ oligomers yielded signs of the disease, including cell culture age- 44 dependent binding of AB and cell death in the glutamatergic populations. Furthermore, consistent with previous 45 findings in postmortem human AD brain Aβ-induced toxicity was selective for glutamatergic rather than 46 GABAeric neurons present in our cultures. This in vitro model of cortical glutamatergic neurons thus offers a sys- 47 tem for future mechanistic investigation and therapeutic development for AD pathology using human cell types 48 specifically affected by this disease.

 $\ \ \, \mathbb{C}\$ 2013 Published by Elsevier Inc. $\ \, 50$

54 53

55

56 57

60

61

06

Introduction

AD is a neurodegenerative disorder characterized by an abundance of A β peptides generated from amyloid precursor abnormal cleavage by membrane-associated secretases (Murphy and LeVine, 2010). The development of AD pathology precedes cognitive symptoms and diagnosis by many years (Lazarczyk et al., 2012), presenting challenges for studying early disease stages to aid in the discovery of preventive drugs.

Conflict of interest: The authors declare no competing financial interests.

E-mail address: schaffer@berkeley.edu (D.V. Schaffer).

Available online on ScienceDirect (www.sciencedirect.com).

0969-9961/\$ – see front matter © 2013 Published by Elsevier Inc. http://dx.doi.org/10.1016/j.nbd.2013.09.005 Over the past decade numerous transgenic animal models of AD 62 have been generated to aid in understanding mechanisms of the disease 63 in humans (Gotz and Ittner, 2008). However, such animals must express 64 multiple pathological proteins at levels higher than endogenous genes 65 to exhibit AD pathology, highlighting the value of developing comple-66 mentary models to enable investigations in human cells with gene ex-67 pression patterns closer to endogenous levels. In particular, in vitro 68 models derived from hPSCs offer strong platforms for basic research 69 and subsequent therapeutic development for early stages of AD.

Tapping into this potentially exciting new class of disease models requires efficient differentiation of hPSCs into neurons affected by AD. In 72 particular, glutamatergic neurons are severely afflicted in the cerebral 73 cortex, and disruption of their circuits is associated with the hallmark 74 memory deficits of AD (Francis et al., 1993; Greenamyre et al., 1988). 75 In contrast, studies of human postmortem AD brain suggest that 76

Please cite this article as: Vazin, T., et al., Efficient derivation of cortical glutamatergic neurons from human pluripotent stem cells: A model system to study neurotoxicity in..., Neurobiol. Dis. (2013), http://dx.doi.org/10.1016/j.nbd.2013.09.005

^{*} Corresponding author at: 278 Stanley Hall, University of California, Berkeley, CA 94720, USA.

77

78

79 80

81

82

83

84 85

86

87

88

89

90

91

92

93 94

95

96

97

Q7

100

102

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

124 125

126

127

128

129

130

131

132

133

134

135

136

GABAergic neurons are spared from death (Rossor et al., 1982). To date, the sensitivity of human cortical glutamatergic neurons to $A\beta$ has not been studied within in vitro models, and such efforts would benefit from renewable sources of glutamatergic neurons derived from hPSCs that could serve as human disease models of AD. We have thus developed an hPSC-based system to examine how $A\beta$ neurotoxicity affects enriched populations of both human cortical glutamatergic and GABAergic neurons.

During development, glutamatergic neurons are generated from the dorsal telencephalon, whereas GABAergic neurons emerge from the ventral telencephalic region (Wilson and Rubenstein, 2000), due in part to Shh-mediated patterning. Here, we show that hESCs and iPSCs differentiated to a dorsal phenotype, with the aid of Shh pathway inhibition and stimulation with FGF-2, primarily give rise to glutamatergic neurons. In contrast, without Shh inhibition, NPCs adapted a ventral phenotype and primarily gave rise a GABAergic fate.

AD is primarily characterized by A β plaques; however, amyloid plaque load shows a weak correlation with dementia in AD (Naslund et al., 2000). By comparison, soluble A β oligomer levels correlate more closely with AD pathology (Kuo et al., 1996). Thus, a stable, oligomeric A β form called "A β globulomers" has been prepared and increasingly studied (Barghorn et al., 2005, Gellermann et al., 2008). While human AD brain neuropathology studies show elevated levels of A β oligomers surrounding cortical neuronal processes, which may cause synaptic impairment (Viola et al., 2008), the differential neurotoxic effects of these oligomers on different human cortical neuronal populations remain to be elucidated. Such results may enhance our understanding of the contribution of this toxic species to the disease process, aid future elucidation of molecular mechanisms for its actions, and help resolve differences in disease progression between for example familial AD and corresponding animal models (Gotz and Ittner, 2008).

In this study, the derivation of human cortical cultures primarily comprised of glutamatergic neurons enabled investigation of the recently proposed role of $A\beta$ globulomers in AD pathology. Specifically, this intermediate form of $A\beta$ was toxic to human glutamatergic neurons in a cell culture age-dependent manner. Furthermore, the results show that $A\beta$ globulomers exert a selective neurotoxicity for glutamatergic rather than GABAergic neuronal populations.

Materials and methods

Cell culture

The H1 (WiCell) and HSF6 (UC San Francisco) hESC lines, and the MSC and fibroblast derived iPSC lines (a kind gift from George Q. Daley, Children's Hospital Boston, Boston, MA), were cultured on Matrigel-coated cell culture plates (BD) in mTeSR1 maintenance medium (Stem Cell Technologies). NPCs were isolated from the hippocampus of adult female Fischer 344 rats (Palmer et al., 1999) and cultured in medium containing DMEM/F12 (Invitrogen) supplemented with N2 (Invitrogen) and 20 ng/ml FGF-2 (Peprotech). Neuronal differentiation of adult rat NPCs was achieved by withdrawing FGF-2 and adding 1 μ M retinoic acid and 5 μ M forskolin for 5 days.

Cortical differentiation of human pluripotent stem cells

In adherent conditions, hPSCs were seeded at a density of 5×10^4 cells/cm² in growth medium. At 50% confluence, the medium was gradually changed to neural basal medium (Invitrogen) containing N2 and B27 (Invitrogen). SMAD signaling inhibitors LDN193189 (Stemgent, 1 μ M) and SB432542 (Tocris Biosciences, 10 μ M) were added from day 1 to day 7 of neural induction. Cyclopamine (Calbiochem, 400 ng/ml) and FGF-2 (Peprotech, 10 ng/ml) were added from days 3 to 14 of differentiation. After 12–14 days, cells were mechanically passaged into poly-L-ornithine (Sigma Aldrich) and laminin (Invitrogen, 20 μ g/ml) coated plates and allowed to undergo

maturation for an additional 3–6 weeks. BDNF (10 ng/ml, Peprotech) 138 was added to cultures one week after initiation of this neuronal matura- 139 tion. For EB mediated neural differentiation, PSCs were aggregated for 140 4 days in ultra low-attachment plates (Corning) and then seeded on 141 Matrigel-coated plates. Cyclopamine (5 µM) and FGF-2 (10 ng/ml) 142 were added to the cultures the following day until day 12 of neural in- 143 duction. At day 14, structures with a rosette-like morphology were me- 144 chanically isolated and plated on poly-L-ornithine and laminin coated 145 plates and allowed to undergo neuronal maturation for 4 weeks. 146 BDNF (10 ng/ml) was added to the cultures one week after rosette 147 isolation.

Gene expression analysis by RT-PCR

Complementary DNA was synthesized from 1 µg total RNA, isolated 150 at day 12 of neural induction and day 40 of neuronal maturation, 151 using random primers and MultiScribe Reverse Transcriptase (Applied 152 Biosystems) in a 20 µl reaction according to the manufacturer's recommendations. The PCR analysis was carried out with Taq DNA polymerase 154 (New England Biolabs). Equal amounts of RNA were tested in PCR reactions under the same conditions to verify the absence of amplification of 156 genomic DNA. The housekeeping gene glyceraldehyde-3-phosphate dephydrogenase (G3PDH) was amplified as an internal control in gene 158 expression analysis. Primer sequences (Table 1) were obtained from 159 the PrimerBank website (http://pga.mgh.harvard.edu/primerbank/) 160 and synthesized by Life Technologies.

149

162

182

Immunocytochemistry

Cultures were fixed with 4% paraformaldehyde or 3% paraformalde- 163 hyde and 2% glutaraldehyde for 10-15 min. The primary antibodies 164 used were: mouse anti-nestin (1:50; R&D Research), rabbit anti-Pax6 165 (1:200; Covance), rabbit anti-BF1 (1:100, Abcam), mouse anti-Otx2 166 (1:50, R&D Systems), mouse anti-MAP2 (1:500, BD Biosciences), rabbit 167 anti-glutamate (1:1500, Sigma Aldrich), rabbit anti-GBA (1:2000, Sigma 168 Aldrich), rabbit anti VGluT1 (1:3000, Synaptic Systems), rabbit anti- 169 TBR1 (1:1000, Millipore), rabbit anti-CUX1 (1:1000, Santa Cruz Biotech- 170 nology), rat anti-CTIP2 (1:1000, Abcam), rabbit-anti Aβ (1:500, 171 Millipore), and rabbit anti-cleaved caspase-3 with Alexa Fluor 488 Conjugate (1:100, 1:50, Cell Signaling). For co-staining with antibodies 173 against AB and glutamate or GABA, the AB primary antibody was conju- 174 gated to Alexa 647 dye (Invitrogen). Cultures were (with the exception 175 of cultures stained with labeled caspase-3 and AB) incubated with 176 fluorescent-labeled secondary Alexa 594-conjugated anti-rabbit and 177 Alexa 488-conjugated anti-mouse antibodies in PBS containing 1% BSA 178 for 1 h (1:1000, Invitrogen). Cultures were counter-stained with DAPI 179 (Molecular Probes) and imaged using a Zeiss Axio Observer A1 inverted 180 microscope.

Electrophysiology

Whole-cell recording was made from neurons after 50 days of neuronal maturation using a patch clamp amplifier (MultiClamp 700B, 184 Axon Instr.) under infrared differential interference contrast optics. Mi- 185 croelectrodes were made from borosilicate glass capillaries, with a resis- 186 tance of 4–5 MW. To apply glutamate, air pulses (10 ms duration at 187 1 Hz) were applied by Picrospritzer III (Parker Hannifin) to a glass pi- 188 pette with the tip of $\sim 5~\mu m$ in diameter. Generally, EPSPs induced by 189 puffed glutamate were recorded at -70~mV in current-clamp mode. 190 For recording action potentials, cells were held at -70~mV in voltage- 191 clamp mode. The intracellular solution for whole-cell recording of 192 EPSPs and action potentials contained (in mM) 140 potassium gluco- 193 nate, 5 KCl, 10 HEPES, 0.2 EGTA, 2 MgCl₂, 4 MgATP, 0.3 Na₂GTP and 10 194 Na₂-phosphocreatine, pH 7.2 (adjusted with KOH).

For recording spontaneous EPSCs (sEPSCs), cells were pre-treated 196 with the extracellular bath solution containing 50 µM picrotoxin to 197

Download English Version:

https://daneshyari.com/en/article/6021998

Download Persian Version:

https://daneshyari.com/article/6021998

<u>Daneshyari.com</u>