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Temporal lobe epilepsy alters adult neurogenesis. Existing experimental evidence is mainly from chronic models
induced by an initial prolonged status epilepticus associated with substantial cell death. In these models,
neurogenesis increases after status epilepticus. To test whether status epilepticus is necessary for this increase,
we examined precursor cell proliferation and neurogenesis after the onset of spontaneous seizures in a model
of temporal lobe epilepsy induced by unilateral intrahippocampal injection of tetanus toxin, which does not
cause status or, inmost cases, detectable neuronal loss.We found a 4.5 times increase in BrdU labeling (estimating
precursor cells proliferating during the 2nd week after injection of toxin and surviving at least up to 7 days) in
dentate gyri of both injected and contralateral hippocampi of epileptic rats. Radiotelemetry revealed that the
rats experienced 112±24 seizures, lasting 88±11 s each, over a period of 8.6±1.3 days from the first
electrographic seizure. On the first day of seizures, their durationwas amedian of 103 s, and themedian interictal
period was 23 min, confirming the absence of experimentally defined status epilepticus. The total increase in cell
proliferation/survival was due to significant population expansions of: radial glial-like precursor cells (type I;
7.2×), non-radial type II/III neural precursors in the dentate gyrus stem cell niche (5.6×), and doublecortin-
expressing neuroblasts (5.1×). We conclude that repeated spontaneous brief temporal lobe seizures are suffi-
cient to promote increased hippocampal neurogenesis in the absence of status epilepticus.

© 2013 Elsevier Inc. All rights reserved.

Introduction

The generation of new neurons, neurogenesis, in the adult brain
continues in mammals, including humans, throughout life (Eriksson
et al., 1998; Gage et al., 1998). Neurogenesis is regulated by a variety
of physiological stimuli and newly born dentate gyrus neurons inte-
grate into the circuitry of the adult hippocampus, leading to theories
for roles in learning and memory (Deng et al., 2010).

In animal models, hippocampal neurogenesis is affected by a
wide range of pathological conditions including of focal epilepsies,
in particular those induced by initial status epilepticus (Bender et al.,
2003; Bengzon et al., 1997; Gray and Sundstrom, 1998; Jessberger
et al., 2005, 2007; Nakagawa et al., 2000; Parent et al., 1997). Despite
the difficulties in assessing neurogenesis in adult humans, where
robust controlled methods for detection cannot be implemented eth-
ically, evidence from surgically excised human tissue supports the pres-
ence of altered neurogenesis in clinical temporal lobe epilepsy (TLE)
(Blumcke et al., 2001; Crespel et al., 2005; Fahrner et al., 2007; Parent
et al., 2006) especially in patients with poor memory performance
preoperatively (Coras et al., 2010). In animal models, which allow the
detection of changes with a greater temporal fidelity, hippocampal
neurogenesis is initially enhanced following the induction of status
epilepticus (Bengzon et al., 1997; Gray and Sundstrom, 1998;
Jessberger et al., 2005, 2007; Parent et al., 1997) and later declines
in some (Hattiangady and Shetty, 2008) but not all models (Bonde
et al., 2006). However, while previous studies have examined the
differential effects of severe convulsive versus less severe status
epilepticus on hippocampal neurogenesis (Bouilleret et al., 1999;
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Hung et al., 2012; Mohapel et al., 2004; Yang et al., 2008), there
have been no studies to our knowledge examining the effects of
repeated spontaneous seizures without a prior status. The fully convul-
sive status epilepticus basedmodels of TLE used previously (induced by
kainate, pilocarpine or electrical stimulation) are typically associated
with substantial morphological changes, in the form of neuronal
loss and sprouting of axonal collaterals. Few studies have demon-
strated seizure-induced cell proliferation and/or neurogenesis in
the absence of status epilepticus. Bengzon et al. (1997) found single
evoked afterdischarges could increase neurogenesis 3-fold and a
rapid kindling protocol (40 stimuli at 5 min) increased it 6-fold, in both
cases with a concomitant increases in apoptosis (TUNEL staining) of
newly generated neurons/precursor cells. Smith et al. (2005) found in-
creased neurogenesis for at least 21 days (respectively) following rapid
amygdala kindling, without neuronal loss, in contrast with Bengzon
et al. (1997). Conventional kindling, with daily or twice-daily stimulation,
increased neurogenesis for several days following stage 5 seizures,
but not in the earlier stages of kindling or after single afterdischarges
(Nakagawa et al., 2000; Scott et al., 1998, 2010). Ferland et al. (2002)
observed a transient increase in BrdU labeled cells 3 days after a sin-
gle flurothyl seizure or up to 7 days after 8 daily seizures, in this case
without evidence of neuronal death. Single febrile seizures at P10
did not induce increased neurogenesis, although more prolonged
seizures induced by kainic acid did (Bender et al., 2003). However,
none of these paradigms can model the effect of spontaneous onset
seizures on neurogenesis of potential relevance to the 60% of patients
with TLE in whom there is no antecedent history of prolonged febrile
seizures (Waruiru and Appleton, 2004).

Intrahippocampal tetanus toxin induces epilepsy with spontane-
ous and recurrent seizures but without major morphological changes
(Jefferys et al., 1992; Jiruska et al., 2010; Mellanby et al., 1977), and
notably without status epilepticus at any stage (Finnerty et al., 2000;
Hawkins and Mellanby, 1987; Jiruska et al., 2010). While the majority
of rats gain seizure remission in this model after 6–8 weeks, they retain
abnormal cellular pathophysiology (Vreugdenhil et al., 2002), perma-
nent cognitive and other behavioral impairments (Brace et al., 1985;
Mellanby, 1982), and a minority continues to seize (Mellanby, 1993).
This model provides a means of testing the effect of early repeated
spontaneous seizures on cell proliferation and neurogenesis indepen-
dently of prolonged status epilepticus.

Materials and methods

Animals

Sixteen adult male Sprague-Dawley rats weighing approximately
250 g were housed under standard conditions in a room with con-
trolled temperature (22±1 °C) and 12/12 h light/dark cycle. The
animals had ad libitum access to food and water. All animal proce-
dures were licensed and performed in strict accordance with the
Animal Scientific Procedures Act (1986) of the United Kingdom and
with Institutional Ethical Review.

Surgery, recording and BrdU injections

Surgical preparation was performed under ketamine/methibromide
or isoflurane anesthesia. Small trephine openings were drilled symmet-
rically over both hippocampi at coordinates 4.1 mm caudal to bregma
and 3.9 mm either side of the midline using the atlas of Paxinos and
Watson (1998). Using a Hamilton microsyringe and infusion pump
(KD Scientific Inc., USA) 1 μl of tetanus toxin (Sigma-Aldrich, UK) solu-
tion was injected into the stratum radiatum of the right hippocampal
CA3 area. Tetanus toxin solution contained 25 ng of tetanus toxin in
1 μl of 0.05 M phosphate buffered saline (PBS; Sigma-Aldrich, UK) and
2% bovine serum albumin (Sigma-Aldrich, UK). Tetanus neurotoxin
solution was injected at 200 nl/min. The microsyringe was left in

hippocampus for 5 min after the injection ended to avoid the solution
leaking back through the injection track. Control animals were injected
with 1 μl of 0.05 M PBS with 2% bovine serum albumin. Following the
injections, silver ball electrodes were inserted into both openings
epidurally over both cortices and fixed to the skull using dental acrylic.
Electrodes were connected to single channel bipolar telemetric trans-
mitters (Data Sciences International, s'Hertogenbosch, Netherlands)
which were implanted subcutaneously over the dorsal aspect of the tho-
rax and secured with sutures. Following surgery, animals were housed in
single cages and allowed to recover for two days. Continuous synchro-
nized video-electrocorticography monitoring started on the 4th day,
which precedes the onset of spontaneous seizures (Jefferys and
Walker, 2006) and continued until the end of the experiments.
Electrocotricography was recorded using Dataquest A.R.T. 4.3
aquisition system (Data Sciences International, s'Hertogenbosch,
Netherlands) and sampled at 100 Hz. Video was recorded synchro-
nously using digital infra-red cameras (Y-cam Solutions Ltd, Rich-
mond, UK) and Spike2 software (Cambridge Electronic Design,
Cambridge, UK). Recorded signals were exported, reviewed and ana-
lyzed using Spike2, to verify the development of spontaneous seizures
and to determine seizure frequency and duration. Seizures were classi-
fied as secondary generalized when they progressed into falls followed
by generalized convulsions.

On day 10 (while still being continuously monitored), rats received
the first of seven daily intraperitoneal injections of bromodeoxyuridine
solution (BrdU, 50 mg/kg, 10 mg/ml in 0.007 M NaOH/0.9% sterile
saline; Sigma-Aldrich, UK). On day 17, 24 h after the last BrdU injec-
tion, animals were humanely overdosed with ketamine and then
perfused using 0.9% saline followed by 4% paraformaldehyde. Brains
were extracted and postfixed in 4% paraformaldehyde.

Immunohistochemistry

The brains were sectioned along the coronal plane at 40 μm inter-
vals through the entire hippocampus on a vibratome (Leica VT1000M,
Leica Microsystems Ltd, Milton Keynes, UK). Each slice was transferred
to an individual well (of a 24 well plate) containing PBS for storage. All
immunohistochemistry was performed on systematically sampled tis-
sue, with the initial section selected randomly and subsequent sections
being taken at constant intervals thereafter, ensuring the entire dentate
gyrus was sampled. BrdU immunostaining was performed on 12 sec-
tions per animal. Caspase-3 labeling and doublecortin (Dcx) labeling
were performed on 6 systematically sampled sections from each ani-
mal. For double stain immunohistochemistry of BrdU and Dcx, sections
were incubated in 2 M HCl at 37 °C for 30 min, followed by washing
and incubation with 3% H2O2–10% methanol for 30 min. Saturation of
non-specific binding sites was achieved in 5% donkey serum in 0.25%
TritonX-100 (1 h). Thiswas followed byovernight incubation of prima-
ry antibodies to BrdU (rat monoclonal 1:1000; Oxford Biotech, UK) and
Dcx (goat polyclonal 1:200; Santa Cruz, CA, USA). The final step was
incubation with secondary antibodies Alexa 448/594 raised in donkey
(1/500, Invitrogen).

Rabbit polyclonal cleaved caspase-3 primary antibody was used at
1:200 (NewEngland Biolabs, Hitchen, UK). Triple immunohistochemistry
studies for BrdU, Sox2 (1:500 Goat polyclonal Santa Cruz Biotechnology,
CA, USA) and anti-rabbit GFAP (1/500, DAKO) were also conducted to
look at the proliferation of both type I and type II/III precursor cells in
subgranular zone (Encinas et al., 2006). Secondary antibodies were
Alexa 488, Alexa 594, and Alexa 647 (1:500, Invitrogen, Life Technologies
Ltd, Paisley, UK) allwere raised in donkey andmatched the primary com-
binations. Finally the slices were mounted on glass microscope slides
with Mowiol mounting medium (Harlow Chemicals, Harlow, Essex, UK)
and stored in the dark at 4 °C to delay damage from exposure to ultravi-
olet light. Non-specific secondary antibody binding was excluded by the
lack of immunostaining in control experiments omitting the primary
antibody.
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