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a b s t r a c t

Haemodynamics-based neuroimaging is widely used to study brain function. Regional blood flow
changes characteristic of neurovascular coupling provide an important marker of neuronal activation.
However, changes in systemic physiological parameters such as blood pressure and concentration of CO2

can also affect regional blood flow and may confound haemodynamics-based neuroimaging. Measure-
ments with functional near-infrared spectroscopy (fNIRS) may additionally be confounded by blood flow
and oxygenation changes in extracerebral tissue layers. Here we investigate these confounds using an
extended version of an existing computational model of cerebral physiology, ‘BrainSignals’. Our results
show that confounding from systemic physiological factors is able to produce misleading haemodynamic
responses in both positive and negative directions. By applying the model to data from previous fNIRS
studies, we demonstrate that such potentially deceptive responses can indeed occur in at least some
experimental scenarios. It is therefore important to record the major potential confounders in the course
of fNIRS experiments. Our model may then allow the observed behaviour to be attributed among the
potential causes and hence reduce identification errors.

& 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Neuroimaging techniques relying on changes in tissue hae-
modynamics and oxygenation, such as functional near-infrared
spectroscopy (fNIRS) and blood oxygen level dependent (BOLD)
based functional magnetic resonance imaging (fMRI), have been
widely and productively used to investigate cerebral function.
Regional haemodynamic changes provide a marker of neuronal
activation due to tight neurovascular coupling (Logothetis et al.,
2001; Gagnon et al., 2015; Weber, 2015).

It is well known that a variety of systemic physiological factors
also significantly affect cerebral blood flow (Rostrup et al., 2002;
Ainslie and Duffin, 2009; Battisti-Charbonney et al., 2011; Sobczyk
et al., 2016). Changes to these factors can occur in the course of
functional experiments. Such changes may, of course, be unrelated
to the experimental procedure, but may also arise more system-
atically (Tachtsidis and Scholkmann, 2016). For example, task-
evoked changes in mean blood pressure have been demonstrated

in protocols including anagram solving (Tachtsidis et al., 2009),
visual stimulation (Minati et al., 2009) and video gaming (Tacht-
sidis and Papaioannou, 2013). Similarly, changes to blood CO2

concentration have been observed in tasks involving speaking
(Scholkmann et al., 2013a) and mental arithmetic (Scholkmann
et al., 2013b). In the case of fNIRS, there is further scope for con-
founds arising from haemodynamic/oxygenation changes in the
extracerebral compartment of the head. Near-infrared light passes
through the overlying scalp and skull tissue layers in order to in-
terrogate the cerebral tissues underneath, and significant optical
absorption and scattering can occur in these layers (Franceschini
et al., 1998; Kirilina et al., 2012; Erdoğan et al., 2014).

It is important to understand and account for such potential
confounds in order to reach reliable conclusions (Minati et al.,
2011; Scholkmann et al., 2014b; Tachtsidis and Scholkmann, 2016).
Numerous approaches have been proposed, ranging from purely
statistical signal processing to biophysical modelling at various
levels of detail.

Statistical models rest on the identification of shared varia-
tional relationships between different contributory elements in
the measured signals. Importantly, systemic factors such as blood
pressure and heart rate, along with contaminant estimators such
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as fNIRS recordings with short channel separations, may be in-
cluded as additional regressors (Saager et al., 2011; Gagnon et al.,
2012; Goodwin et al., 2014; Brigadoi and Cooper, 2015; Yücel et al.,
2015).

In contrast, biophysical modelling approaches constrain system
behaviour based on knowledge of the underlying physiology.
Cerebral haemodynamics are affected by both active regulation
and the passive biomechanics of the blood vessels and surround-
ing tissue, in turn constrained by the rigid enclosure of the skull
(Zhang, 2002; Hu et al., 2006; Tzeng and Ainslie, 2013; Ainslie,
2014). Interactions between these elements and the response to
neuronal activation are complex (e.g. (Maggio et al., 2014)) and
have been modelled in numerous ways.

The system is usually considered as one or more conductive
compartments that offer some resistance to flow and have some
capacity to distend. A convenient analogy is to an electrical circuit,
with blood flow corresponding to electrical current through re-
sistors and volume to charge stored on capacitors. The Balloon
(Buxton et al., 1998; Friston et al., 2000; Buxton et al., 2004) and
Windkessel (Mandeville et al., 1999; Olufsen et al., 2002; Boas
et al., 2003) models are archetypes of this form. Resistances and
capacitances are not fixed and may have functional dependencies
on flow, volume and other stimuli. An important foundation for
treatments of the latter is the Ursino-Lodi family of models (Ursino
and Lodi, 1997, 1998; Ursino et al., 2000), which are based on si-
milar principles to the Balloon and Windkessel models but include
influences from systemic factors such as blood pressure and blood
CO2 concentration, as well as the production and reabsorption of
cerebrospinal fluid. These models originate in the study of auto-
regulation and intracranial pressure rather than neuroimaging.

Modelled haemodynamics relate to fNIRS data via the quan-
tities of marker species, particularly oxyhaemoglobin (HbO2) and
deoxyhaemoglobin (HHb), present in the imaged volume. The
amounts of each change with blood flow in and out of the tissue
and also with oxygen diffusion and consumption. Typically fNIRS-
oriented models treat the imaged tissue as effectively homo-
genous, simply estimating the NIRS measurements from relative
blood volume, but there have been a number of attempts to give a
more detailed characterisation of the relationships between blood
flow, tissue oxygenation and the optical signals (Fantini, 2002,
2013, 2014; Diamond et al., 2006, 2009).

In this paper we use a modified version of the BrainSignals
biophysical model (Banaji et al., 2008; Caldwell et al., 2015) to
investigate confounding by systemic and extracerebral factors,
with particular reference to the issue of misleading ‘false positive’
results, which have the appearance of activation when in fact none
occurred, and ‘false negative’ results, which do not show evidence
of activation even though it was actually present (Tachtsidis and
Scholkmann, 2016). The existing model, a simplified descendant of
the earlier BrainCirc (Banaji et al., 2005), addresses the cerebral
compartment only. It incorporates both a haemodynamic compo-
nent that models autoregulation and CO2 reactivity (drawing on
(Ursino and Lodi, 1998)) and a model of a portion of the mi-
tochondrial metabolism (drawing on (Korzeniewski and Zoladz,
2001)) to model oxygen consumption. Here we extend this with
an additional compartment to model scalp haemodynamics.

The purpose of the joint model is to provide a tool by which the
potential contributions to measured fNIRS signals can be under-
stood and to assist the interpretation of experimental data that
may be subject to confounding. This is in contrast to more ‘model-
free’ denoising approaches, in which the systemic factors are di-
rectly regressed out of the measurements. While these approaches
can be very successful (Saager and Berger, 2005; Tachtsidis et al.,
2010b; Gagnon et al., 2014b), the implicit assumption that con-
founds map linearly to fNIRS artefacts may fail to capture more
complex or interacting effects. Moreover, if the systemic changes

are correlated to the cerebral activation there is a risk that some of
the functional brain activity may be regressed out along with
systemic contributions. A more explicit modelling approach allows
the inclusion and exploration of key interactions governing system
behaviour from known physiology. As the relationship between
fNIRS measurements and systemic physiological parameters is
often non-linear and non-stationary, this approach allows a better
description of this complexity. In addition to providing a tool of
data integration and denoising, this approach provides a test base
platform for computational simulation investigations of various
physiological scenarios such as the ones presented in this paper.

2. Methods

2.1. Modelling

The model used here, termed BSX (from BrainSignals eX-
tended), derives from earlier models described in Caldwell et al.
(2015) and Banaji et al. (2008). The overall structure shared by all
these models is depicted in Fig. 1. There are two main interacting
functional compartments: a haemodynamic compartment re-
presenting blood flow and oxygen delivery to the brain tissue, and
a metabolic compartment, representing oxygen consumption in
the neuronal mitochondria. There are important feedback re-
lationships between the two compartments, since metabolism
depends on the supply of O2, while O2 concentration and meta-
bolic demand are among the modulators of blood flow. The state
variables in the two compartments are used to predict NIRS
measurements of haemoglobin and cytochrome c oxidase (CCO).

In the haemodynamic compartment, blood flow is driven by,
and regulated in response to three systemic inputs—mean arterial
pressure (Pa), arterial partial pressure of carbon dioxide ( P COa 2)
and arterial oxygen saturation ( S Oa 2)—together with an explicit

Demand

Cerebral
Blood Flow

Cerebral
Metabolism

PaCO2 SaO2

Extracerebral
Blood Flow

Pa Flux

NIRS (Hb)NIRS (CCO)

Fig. 1. Main structure of the BSX model. Model inputs are represented as circles,
the main dynamic compartments as rectangles and outputs as ellipses. Two distinct
NIRS outputs are simulated: haemoglobin-based measurements (labelled Hb), es-
timated from the blood flow compartments, and measurements of the cytochrome
c oxidase redox state (labelled CCO), estimated from the metabolic model. Elements
shown in orange are new to BSX, while those in blue are modified from the pre-
viously published model B1M2 in Caldwell et al. (2015). The remaining elements
are adopted unchanged. (A more detailed diagram showing the relationships be-
tween all variables and parameters in the model can be found in Supplementary
Fig. 1.).
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