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Quantitative analysis of magnetic resonance imaging (MRI) scans of the brain requires accurate auto-
mated segmentation of anatomical structures. A desirable feature for such segmentation methods is to be
robust against changes in acquisition platform and imaging protocol. In this paper we validate the
performance of a segmentation algorithm designed to meet these requirements, building upon gen-
erative parametric models previously used in tissue classification. The method is tested on four different

MRI datasets acquired with different scanners, field strengths and pulse sequences, demonstrating compar-
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able accuracy to state-of-the-art methods on T1-weighted scans while being one to two orders of
magnitude faster. The proposed algorithm is also shown to be robust against small training datasets, and
readily handles images with different MRI contrast as well as multi-contrast data.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

So-called whole-brain segmentation techniques aim to auto-
matically label a multitude of cortical and subcortical regions from
brain MRI scans. Recent years have seen tremendous advances in
this field, enabling, for the first time, fine-grained comparisons of
regional brain morphometry between large groups of subjects.
Current state-of-the-art whole-brain segmentation algorithms are
typically based on supervised models of image appearance in T1-
weighted scans, in which the relationship between intensities and
neuroanatomical labels is learned from a set of manually anno-
tated training images.

This approach suffers from two fundamental limitations. First,
segmentation performance often degrades when the algorithms
are applied to T1-weighted data acquired on different scanner
platforms or using different imaging sequences, due to subtle
changes in the obtained image contrast (Han and Fischl, 2007; Roy
et al., 2013). And second, the exclusive focus on only T1-weighted
images hinders the ultimate translation of whole-brain segmen-
tation techniques into clinical practice, where they hold great
potential to support personalized treatment of patients suffering
from brain diseases. This is because clinical imaging uses
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additional MRI contrast mechanisms to show clinically relevant
information, including T2-weighted or fluid attenuated inversion
recovery (FLAIR) images that are much more sensitive to certain
pathologies than T1-weighted scans (e.g., white matter lesions or
brain tumors). Although incorporating models of lesions into
whole-brain segmentation techniques is an open problem in itself,
a first necessary step towards bringing these techniques into
clinical practice is to make them capable of handling the multi-
contrast images that are acquired in standard clinical routine.

In this article, we present and validate the performance of a
fast, sequence-independent whole-brain segmentation algorithm.
The method, which is based on a mesh-based computational atlas
combined with a Gaussian appearance model, yields segmentation
accuracies comparable to the state of the art; automatically adapts
to different MRI contrasts (even if multimodal); requires only a
small amount of training data; and achieves computational times
comparable to those of the fastest algorithms in the field (Zikic
et al.,, 2014; Ta et al., 2014).

1.1. Current state of the art in whole-brain segmentation

Early methods for the segmentation of brain structures often
relied on parametric models, in which the available training data
were summarized in relevant statistics that were subsequently
used to inform the segmentation of previously unseen subjects.
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Because many distinct brain structures have similar intensity
characteristics in MRI, these methods were typically built around
detailed probabilistic models of the expected shape and relative
positioning of different brain regions, using surface-based (Kele-
men et al., 1998; Pizer et al., 2003; Patenaude et al., 2011; Cootes
et al., 1998) or volumetric (Fischl et al., 2002; Pohl et al., 2006b)
models. These anatomical models were then combined with su-
pervised models of appearance to encode the typical intensity
characteristics of the relevant structures in the training data, often
using Gaussian models for either the intensity of individual voxels
(Fischl et al., 2002; Pohl et al., 2006b) or for entire regional in-
tensity profiles (Kelemen et al., 1998; Pizer et al., 2003; Patenaude
et al., 2011; Cootes et al., 1998). The segmentation problem was
then formulated in a Bayesian setting, in which segmentations
were sought that satisfy both the shape and appearance
constraints.

More recently, non-parametric methods' have gained increas-
ing attention in the field of whole-brain segmentation, mostly in
the form of multi-atlas label fusion (Rohfling et al., 2004a; Heck-
emann et al., 2006; Isgum et al., 2009; Artaechevarria et al., 2009;
Sabuncu et al., 2010; Rohfling et al., 2004b; Wang et al., 2013;
Manjoén et al., 2011; Rousseau et al., 2011; Tong and Wolz, 2013;
Wau et al,, 2014; Asman and Landman, 2013; Zikic et al., 2014; Ig-
lesias and Sabuncu, 2015). In these methods, each of the manually
annotated training scans is first deformed onto the target image
using an image registration algorithm. Then, the resulting de-
formation fields are used to warp the manual annotations, which
are subsequently fused into a final consensus segmentation. Al-
though early methods used a simple majority voting rule (Rohfling
et al., 2004a; Heckemann et al., 2006), recent developments have
concentrated on exploiting local intensity information to guide the
atlas fusion process. This is particularly helpful in cortical areas, for
which accurate inter-subject registration is challenging (Sabuncu
et al., 2010; Ledig et al., 2012). Label fusion methods have been
shown to yield very accurate whole-brain segmentations (Land-
man and Warfield, 2012), but their accuracy comes at the expense
of a high computational cost as a result of the multiple non-linear
registrations that are required. Efforts to alleviate this issue in-
clude a local search using entire image patches, such that much
faster linear registrations can be used (Manjon et al., 2011; Ta et al.,
2014), as well as using rich contextual features so that only a single
non-linear warp is needed (Zikic et al., 2014).

1.2. Existing methods that handle changes in MRI contrast

With the exception of simple majority voting (Rohfling et al.,
2004a; Heckemann et al., 2006), all the methods reviewed above
use supervised intensity models, in the sense that they explicitly
exploit the specific image contrast properties of the dataset used
for training. This poses limitations on their ability to segment
images that were acquired with different scanners or imaging
sequences than the training scans.

A generic way of making such methods work across imaging
platforms is histogram matching (also known as intensity nor-
malization), in which the intensity profiles of new images are al-
tered so as to resemble those of the images used for training (Nyul
et al,, 2000; Roy et al., 2013). However, histogram matching can
only be used when the training and target data have been acquired
with the same type of MRI sequence (e.g., T1-weighted), and it
does not completely cancel the negative effects that intensity

! Note that the distinction between parametric vs. non-parametric methods
here only refers to the overall segmentation approach that is taken - the pair-wise
registrations in non-parametric segmentation methods can still be either para-
metric (e.g., B-splines, Rueckert et al. (1999)) or non-parametric (e.g., Demons,
Thirion (1998)).

mismatches have on segmentation accuracy (Roy et al., 2013).

Another approach is to have the training dataset include ima-
ges that are representative of all the scanners and protocols that
are expected to be encountered in practice. However, this ap-
proach quickly becomes impractical due to the large number of
possible combinations of MRI hardware and acquisition para-
meters. The situation is exacerbated for clinical data, due to the
lack of standardized protocols to acquire multi-contrast MRI data
across clinical imaging centers.

In contrast synthesis (Roy et al., 2013), the original scan is not
directly segmented, but rather used to generate a new scan with
the desired intensity profile, which is then segmented instead. The
premise of this technique is that a database of scans acquired with
both the source and target contrast is available, so that the re-
lationship between the two can be learned (Iglesias et al., 2013a;
Roy et al., 2013). This approach makes it unnecessary to manually
annotate additional training data for each new set-up that is
considered — a considerable advantage given that a manual whole-
brain segmentation often takes several days per scan (Fischl et al.,
2002). However, it still requires that additional example subjects
are scanned with both the source and target scanner and protocol,
which is not always practical.

Finally, a more fundamental way to address the problem is to
perform whole-brain segmentation in the space of intrinsic MRI
tissue parameters (Fischl et al., 2004b). However, this requires the
usage of specific MRI sequences for which a physical forward
model is available, which are not widely implemented on MRI
scanning platforms, and particularly not on clinical systems.

1.3. Contribution: validation of a fast, sequence-adaptive whole-
brain segmentation algorithm

In contrast to the aforementioned approaches to whole-brain
segmentation, which rely on supervised models of the specific
intensity profiles seen in the training data, in this paper we vali-
date an unsupervised approach that automatically learns appro-
priate intensity models from the images being analyzed. At the
core of the method is an intensity clustering algorithm (a Gaussian
mixture model) that derives its independence of specific image
contrast properties by simply grouping together voxels with si-
milar intensities. This approach is well-established for the purpose
of tissue classification (aimed at extracting the white matter, gray
matter and cerebrospinal fluid) where it is typically augmented
with models of MRI imaging artifacts (Wells et al., 1996a; Van
Leemput et al., 1999a; Ashburner and Friston, 2005) and spatial
models such as probabilistic atlases (Ashburner and Friston, 1997;
Van Leemput et al., 1999a; Ashburner and Friston, 2005) or Mar-
kov random fields (Van Leemput et al., 1999b; Zhang et al., 2001).

Here we validate a method for whole-brain segmentation that
is rooted in this type of approach, building on prior work from our
group including a proof-of-concept demonstration in whole-brain
segmentation (Van Leemput, 2009), as well as the automated
segmentation methods for hippocampal subfields (Iglesias et al.,
2015a) and subregions of the brainstem (Iglesias et al., 2015b) that
are distributed with the FreeSurfer software package (Fischl et al.,
2002). The method we validate here uses a mesh-based prob-
abilistic atlas to provide whole-brain segmentation accuracy at the
level of the state of the art, both within and across scanner plat-
forms and pulse sequences. Unlike many other techniques, the
method does not need any preprocessing such as skull stripping,
bias field correction or intensity normalization. Furthermore, be-
cause the method is parametric, only a single non-linear regis-
tration (of the atlas to the target image) is required, yielding a very
fast overall computational footprint.

An early version of this work, with a preliminary validation,
was presented in Puonti et al. (2013). The current article adds a
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