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A B S T R A C T

In multivariate pattern analysis of neuroimaging data, ‘second-level’ inference is often performed by
entering classification accuracies into a t-test vs chance level across subjects. We argue that while the
random-effects analysis implemented by the t-test does provide population inference if applied to activation
differences, it fails to do so in the case of classification accuracy or other ‘information-like’ measures, because
the true value of such measures can never be below chance level. This constraint changes the meaning of the
population-level null hypothesis being tested, which becomes equivalent to the global null hypothesis that
there is no effect in any subject in the population. Consequently, rejecting it only allows to infer that there
are some subjects in which there is an information effect, but not that it generalizes, rendering it effectively
equivalent to fixed-effects analysis. This statement is supported by theoretical arguments as well as simu-
lations. We review possible alternative approaches to population inference for information-based imaging,
converging on the idea that it should not target the mean, but the prevalence of the effect in the population.
One method to do so, ‘permutation-based information prevalence inference using the minimum statistic’, is
described in detail and applied to empirical data.

© 2016 Elsevier Inc. All rights reserved.

Introduction

Since the seminal work of Haxby et al. (2001), an increasing
number of neuroimaging studies have employed multivariate
methods to complement the established mass-univariate approach
(Friston et al., 1995) to the analysis of functional magnetic resonance
imaging (fMRI) data, a field now known as multivariate pattern
analysis (MVPA; Norman et al., 2006). Most MVPA studies use
classification (Pereira et al., 2009) to examine activation patterns;
the accuracy of a classifier in distinguishing activation patterns
associated with different experimental conditions serves as a
measure of multivariate effect strength. Since the target of MVPA
is not a generally increased or decreased level of activation but
the information content of activation patterns (cf. Pereira and
Botvinick, 2011), it has also been characterized as information-based
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imaging and distinguished from traditional activation-based imaging
(Kriegeskorte et al., 2006).

Many methodological aspects of MVPA have already been dis-
cussed in detail: what kind of classifier to use (Cox and Savoy, 2003;
Norman et al., 2006), whether to adapt parametric multivariate
statistics instead of classifiers (Allefeld and Haynes, 2014; Nili et al.,
2014), how to understand searchlight-based accuracy maps (Etzel
et al., 2013), or how classifier weights can be made interpretable
(Haufe et al., 2014; Hoyos-Idrobo et al., 2015). By contrast, the
topic of population inference based on per-subject measures of
information content, i.e. the question whether an information effect
observed in a sample of subjects generalizes to the population these
subjects were recruited from, has not yet received sufficient atten-
tion (but see Brodersen et al., 2013).

In univariate analysis of multi-subject fMRI studies, the standard
way to achieve population inference is to perform a ‘second-level’
null hypothesis test (Holmes and Friston, 1998). For each subject, a
‘first-level’ contrast (activation difference) is computed, and this con-
trast enters a second-level analysis, a t-test or an ANOVA. Specifically
for a simple one-sided t-test vs 0, reaching statistical significance
allows to infer that the experimental manipulation is associated with
an increase of activation on average in the population of subjects.
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This is interpreted in such a way that the effect is ‘common’ or
‘stereotypical’ in that population (Penny and Holmes, 2007, p. 156).

With the adoption of information-based imaging, it has become
accepted practice to apply the same second-level inferential proce-
dures to the results of first-level multivariate analyses, in particular
classification accuracy (see e.g. Haxby et al., 2001, Haynes et al., 2007,
Spiridon and Kanwisher, 2002): A classifier is trained on part of the
data and is tested on another part, using each part for testing once
(cross-validation), and the classification performance is quantified
in the form of an accuracy, the fraction of correctly classified test
data points. Applied for example to two different experimental con-
ditions, if there was no multivariate difference in the data between
conditions, the classifier would operate at ‘chance level’, i.e. it would
on average achieve a classification accuracy of 50%. At the second
level, accuracies from different subjects are then entered into a one-
sided one-sample t-test vs 50%, in order to show that the ability
to classify above chance and therefore the presence of an informa-
tion effect is typical in the population the subjects were recruited
from.

In this paper we argue that despite of the seemingly analogous
statistical procedure, a t-test vs chance level applied to accuracies
cannot provide evidence that the corresponding effect is typical
in the population. In contrast to other criticisms of this use of
the t-test (see below), in our view the problem is not so much
that the estimation distribution of cross-validated accuracies is not
normal or even symmetric, or that a normal distribution model is
generally inadequate for a quantity bounded to an interval [0%, 100%].
Rather, the problem is that other than estimated accuracies, the true
single-subject accuracy can never be below chance level because it
measures an amount of information.2 We will show that this restric-
tion changes the meaning of the t-test: It now tests the global null
hypothesis (Nichols et al., 2005) that there is no information in any
subject in the population. As a consequence, achieving a significant
test result allows us only to infer that there are people in which there
is an effect, but not that the presence of information generalizes to
the population. The argument does not only hold for classification
accuracy, but also for other ‘information-like’ measures.

The t-test on accuracies has been criticized before (Brodersen
et al., 2013; Stelzer et al., 2013) on the grounds that its distribu-
tional assumptions are not fulfilled for cross-validated classification
accuracies. Such a distributional error invalidates the calculation of
critical values for the t-statistic and can therefore lead to an increased
rate of false positives. This problem may be solved by better distri-
bution models (Brodersen et al., 2013) or the use of non-parametric
statistics (Stelzer et al., 2013). Our criticism goes significantly beyond
that: Not only is the t-test quantitatively wrong, but it effectively
tests a null hypothesis that is qualitatively different from its use with
univariate statistics, with the consequence that rejection of this null
hypothesis no longer supports population inference.

Please note that our criticism pertains specifically to a second-
level t-test applied to per-subject classification accuracies or similar
measures. It does not apply to the classification of subjects,
e.g. into different patient groups in medical applications (Sabuncu,
2014; Sabuncu and Van Leemput, 2012), or to the classification of
condition-specific patterns across subjects (Mourao-Miranda et al.,
2005). Moreover, it only concerns quantities that measure the infor-
mation content of data, but not related quantities like classifier

2 Note that in this paper we only discuss the standard case of MVPA where the pair
of experimental conditions is the same for training and test data. In ‘cross-decoding’
(cf. Haynes and Rees, 2005a), where it is tested whether a classifier trained on one
pair of conditions is able to extract information corresponding to another pair of con-
ditions, below-chance true accuracies may be possible. Cross-decoding targets not
just the presence of information, but also the degree to which its neurophysiological
representation is invariant with respect to another experimental manipulation.

weights (Gaonkar and Davatzikos, 2013; Gaonkar et al., 2015; Wang
et al., 2007, see below).

The organization of the paper is as follows: In the section The
problem with the t-test on accuracies we detail how a second-level
t-test achieves population inference for univariate contrasts. We
then explain that MVPA measures are ‘information-like’ and show,
both theoretically and using simulations, that for such measures
the t-test effectively tests the global null hypothesis that there is
no effect in any subject. The section An alternative: information
prevalence inference reviews possible alternatives to the t-test on
accuracies, converging on the idea that population inference for
information-based imaging should target the proportion of sub-
jects in the population with an effect. One way to implement such
an ‘information prevalence inference’ is described in detail in the
section Permutation-based information prevalence inference using
the minimum statistic, and results of its application to real data are
compared with those of the t-test. We conclude with the discussion
of a number of questions surrounding the problem of population
inference for information-based imaging.

The problem with the t-test on accuracies

Population inference in univariate fMRI analysis

To see why the t-test on accuracies cannot provide population
inference, we briefly recapitulate how standard univariate analysis
does achieve it. In a single subject, an activation difference or
contrast Db is estimated based on the general linear model (GLM;
Friston et al., 1995). Because it is obtained from noisy data, the
estimate is itself noisy,

D̂b ∼ N (Db,s2
1 ), (1)

where s2
1 denotes the estimation variance of the contrast (cf. Fig. 1a).

If several subjects are included in a study, the true activation
difference Db varies across subjects:

Dbk ∼ N (Dl,s2
2 ) (2)

where Dl is the average true activation difference in the population
of subjects and s2

2 the population variance of the effect (Fig. 1b).
The added subscript k indicates that we now consider the subject
as randomly sampled from the population. The estimated contrast
in several subjects therefore shows variation for two reasons — they
are noisy estimates (s2

1 ), and different subjects respond differently
(s2

2 ):

D̂bk ∼ N (Dl,s2
1 + s2

2 ). (3)

The symbol D̂bk indicates that this contrast is both estimated and
sampled.

A one-sided t-test applied to the D̂bk from a sample of subjects
k = 1 . . . N has the null hypothesis Dl = 0. If it can be rejected
(Dl > 0), this allows us to make a statement about the population
of subjects because Dl is a parameter of a population model (Eq. (2)).
And this statement concerns a typical effect because Dl is the mean,
median, and mode of the assumed normal distribution. This kind of
test is also called random-effects analysis (RFX) because it treats sub-
jects as randomly sampled from a population (Searle et al., 1992). It
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