
NeuroImage 141 (2016) 490–501

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img

Characterising brain network topologies: A dynamic analysis approach
using heat kernels

A.W. Chunga, M.D. Schirmerb, M.L. Krishnanc, G. Ballc, P. Aljabarc, A.D. Edwardsc, G. Montanaa,*
aDepartment of Biomedical Engineering, Division of Imaging Sciences & Biomedical Engineering, King’s College London, London, UK
bStroke Division & Massachusetts General Hospital, Harvard Medical School, J. Philip Kistler Stroke Research Center, Boston, USA
cCentre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King’s College London, London, UK

A R T I C L E I N F O

Article history:
Received 15 March 2016
Received in revised form 27 May 2016
Accepted 3 July 2016
Available online 14 July 2016

Keywords:
Brain connectivity networks
Connectome
Structural network
Heat kernel
Diffusion kernel
Synthetic networks
Preterm
Developing brain
Classification
Motor function
Diffusion MRI

A B S T R A C T

Network theory provides a principled abstraction of the human brain: reducing a complex system into a sim-
pler representation from which to investigate brain organisation. Recent advancement in the neuroimaging
field is towards representing brain connectivity as a dynamic process in order to gain a deeper understand-
ing of how the brain is organised for information transport. In this paper we propose a network modelling
approach based on the heat kernel to capture the process of heat diffusion in complex networks. By apply-
ing the heat kernel to structural brain networks, we define new features which quantify change in heat
propagation. Identifying suitable features which can classify networks between cohorts is useful towards
understanding the effect of disease on brain architecture. We demonstrate the discriminative power of heat
kernel features in both synthetic and clinical preterm data. By generating an extensive range of synthetic
networks with varying density and randomisation, we investigate heat diffusion in relation to changes in
network topology. We demonstrate that our proposed features provide a metric of network efficiency and
may be indicative of organisational principles commonly associated with, for example, small-world archi-
tecture. In addition, we show the potential of these features to characterise and classify between network
topologies. We further demonstrate our methodology in a clinical setting by applying it to a large cohort of
preterm babies scanned at term equivalent age from which diffusion networks were computed. We show
that our heat kernel features are able to successfully predict motor function measured at two years of age
(sensitivity, specificity, F-score, accuracy = 75.0, 82.5, 78.6, and 82.3%, respectively).

© 2016 Elsevier Inc. All rights reserved.

Introduction

The human brain is a complex system of units (neurons) which
interact with one another to process internal and external stimuli.
In such complex systems, many features emerge due to their inter-
action and their global connections which can be analysed using
graph theory. The application of graph theory for investigating brain
function and connectivity has been readily adopted by the neu-
roimaging community (Bullmore and Sporns, 2009; Fornito et al.,
2015). As a mathematical model capturing relationships between
interacting objects, a graph (or network) provides a simple abstrac-
tion of neural connectivity; reducing a complex system into a col-
lection of nodes (representing brain regions) which are connected
by edges representative of their relation. In diffusion magnetic res-
onance imaging (MRI) based structural networks, edges between
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brain regions signify their connection via an anatomical pathway
from white matter tracts inferred using tractography. Edges may be
assigned a weight indicating the strength of the connection, such
as the use of fractional anisotropy as a measure of the pathway’s
structural integrity (Fornito et al., 2013; Jones et al., 2013). In func-
tional MRI based networks, edges represent a measure of association
in blood-oxygen-level-dependent signals across time, which reflect
neuronal activity. The strength of this association may be indicative
of how functionally related two regions are and is thus assigned as an
edge weight (Fornito et al., 2013). As a branch of mathematics, graph
theory offers a wealth of tools to describe networks in a rich form,
making it an attractive framework for investigating brain organisa-
tion. For example, topological principles such as small-world and rich-
club organisation have been found in many natural complex systems,
including the brain (Ball et al., 2014; Towlson et al., 2013; van den
Heuvel et al., 2008). Networks with small-world architecture which
may be characterised by both large clustering and short path lengths
have been associated with efficient information transport (Watts and
Strogatz, 1998). The rich-club can be seen as a highly inter-connected
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set of nodes which form a backbone of the network structure (van
den Heuvel et al., 2012) and its network-theoretical importance has
been shown with respect to nodal specialisation, functional integra-
tion and resilience to “attacks” (Colizza et al., 2006; Collin et al.,
2014; McAuley et al., 2007). Several other graph-theoretical mea-
sures have been investigated to describe these topological properties
of the underlying brain connectivity, however, there is no consen-
sus on which set of measures can be used to completely characterise
the brain (for a review of commonly used measures see Rubinov and
Sporns (2010)).

The strength of a graph representation for brain characterisation
lies in its simplicity. Graph topologies can be used to describe a num-
ber of neural mechanisms which shape neural responses to a disease
and its propagation through brain architecture (Fornito et al., 2015).
The highly interconnected brain enables disease propagation across
the organ via its axonal pathways (Hirokawa et al., 2010; Perlson et
al., 2010; Saxena and Caroni, 2011). Thus disorders can have a perva-
sive effect on function and structure that is not necessarily localised
to the region of insult or pathological onset. For example, stroke
patients exhibit functional over-activation across brain regions that
are remote from the vicinity of the lesion (Rehme and Grefkes,
2013). Another example is widespread neurodegeneration alongside
disease progression in degenerative disorders such as Huntington’s
and Parkinson’s diseases which are believed to have focal onset
(Goedert et al., 2013; Tabrizi et al., 2009). An example neural response
is dedifferentiation, the recruitment of diffused, non-specific brain
regions for task performance that is often observed in the ageing pop-
ulation (Sleimen-Malkoun et al., 2014) and schizophrenia (Honey et
al., 2005). Another neural mechanism is compensation, where func-
tional activity is increased following an insult or in the early stages
of a neurodegenerative disease and is frequently reported in multiple
sclerosis (Chiaravalloti et al., 2015) and Alzheimer’s disease (Elman
et al., 2014). As the spread and impact of these neural responses can
be shaped by the underlying brain connectivity, network theory may
provide quantitative descriptors of these mechanisms (Fornito et al.,
2015; Schoonheim et al., 2015). Graph measures or features have thus
been found to be associated with a number of neuropathologies (Lo
et al., 2010; Odish et al., 2015; Pandit et al., 2014; Wang et al., 2009).

A main objective in neuroimaging studies is to elucidate how
a specific disease affects the underlying network topology; gaining
such an understanding then allows discrimination between patients
and healthy controls. Identifying biomarkers of a disease would thus
be useful for advanced diagnostic or predictive applications. The
power of network-derived features for describing the human brain is
evident by their increasing use in classification of neuroimaging data.
Network classification involves categorising a network as belong-
ing to a control or a disease population, or even to a subcategory in
the case of spectrum disorders. Network classification requires the
extraction of graph-based features which are typically used as predic-
tors in statistical classifiers. Studies have explored the discriminative
power of network edges, revealing their promise in classifying a
range of pathologies (Arbabshirani et al., 2013; Prasad et al., 2015;
Richiardi et al., 2012; Rosa et al., 2015; Shen et al., 2010; Zalesky
et al., 2010). Comparisons of graph metrics which characterise local
and global topology as well as network principles have also been
employed for classification purposes in major depressive disorder
(Sacchet et al., 2015), Alzheimer’s disease (Prasad et al., 2015) and
pre-school versus adolescent children (Meskaldji et al., 2015).

The mechanisms by which neural impulses, or information, prop-
agate through the human brain network are limited by the finite
propagation speed of the electro-chemical signals. Some network
measures, such as shortest characteristic path length, do not incor-
porate the idea of information transport directly, but describe the
structural (and static) connectivity profile while using shortest
path lengths. However, given the propagative neural mechanisms
discussed earlier, we hypothesise that capturing energy transfer

through a network over ‘time’ could provide useful features for clas-
sification purposes. In this work, we propose the heat kernel for
capturing energy transfer in a network. A heat kernel summarises
the effect of applying a source of heat to a network and observing
its diffusion process over ‘time’. It encodes the distribution of heat
over a network and characterises the underlying topological struc-
ture of the graph. This diffusion process, from which the heat kernel
is the fundamental solution to, was widely used in image analysis for
smoothing purposes (Babaud et al., 1986; Perona and Malik, 1990).
This idea was later extended by applying the heat kernel on a graph
representation of the image (Zhang and Hancock, 2008). In the con-
text of brain network analysis, a few studies using heat kernels have
been reported. They include an application on structural networks
to investigate disease progression in Alzheimer’s in which the eigen-
modes of the heat kernel showed spatial similarity to the measured
atrophy patterns from the grey matter volume (Raj et al., 2012).
Heat kernels have also been utilised to investigate the relationship
between structural and functional networks (Abdelnour et al., 2014).
In these cases, analyses are performed with respect to a single heat
kernel calculated with its time parameter fixed to a single value. In
contrast, we propose an alternative approach where we make use
of a time-series of heat kernels computed over a range of the time
parameter. From this time-series, we derive features representative
of energy transport which appear to capture salient network prop-
erties that can be used to discriminate between different network
topologies. It should be noted that there are similar works which
capture information propagation through a brain network such as
the modelling of spreading patterns to characterise global interac-
tions between regions (Mišić et al., 2015), or random walkers for
community detection (Betzel et al., 2013).

Furthermore to our proposed heat kernel features, we present a
framework for generating a baseline of synthetic networks to simu-
late brain networks of varying network densities and randomisation
levels. With these synthetic networks, we investigate the changes
in our heat kernel features with graph topology and demonstrate
an association with small-world architecture. Subsequently, using
linear discriminant analysis we show the ability of our heat ker-
nel measures to classify between specific topologies. In addition, we
apply our methodology to the problem of early detection of adverse
neurological outcome that is common in children born very preterm
(born at 32 weeks gestation or younger) (Delobel-Ayoub et al., 2009;
Edwards et al., 2011). Surviving preterm infants are susceptible to
significant deficits in cognitive, behavioural and sensory develop-
ment as well as long-term motor dysfunction with a high risk of
cerebral palsy (Back and Miller, 2014; Marlow et al., 2007). Associa-
tions between cognitive outcome and diffusion tractography features
computed at term from premature neonates have been reported (Ball
et al., 2015; Duerden et al., 2015; van Kooij et al., 2012), demon-
strating the advantage of imaging predictors for early diagnosis. The
development of brain architectural features such as those proposed
in our work may contribute towards understanding the neural mech-
anisms characteristic of functional deficits linked with prematurity.
Obtaining predictors which are sensitive to neurodevelopmental
outcome is also invaluable for early intervention and treatment plan-
ning to mitigate the impact of preterm birth. Thus we test the efficacy
of heat kernel features computed from structural networks to be
predictors of motor dysfunction in a cohort of preterms. By divid-
ing the cohort into two groups depending on their mobility score,
we demonstrate that our heat kernel features can predict the motor
outcome of preterm babies scanned at term.

The rest of the paper takes the following format: in the Material
and methods section, we first detail our heat kernel methodology
and synthetic network framework. This is followed by experimental
settings for the synthetic networks and the clinical application on a
premature cohort. Results of the experiments are next presented and
lastly the paper closes with the Discussion section.
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