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Studies of brain-wide functional connectivity or structural covariance typically usemeasures like the Pearson cor-
relation coefficient, applied to data that have been averaged across voxelswithin regions of interest (ROIs). How-
ever, averaging across voxels may result in biased connectivity estimates when there is inhomogeneity within
those ROIs, e.g., sub-regions that exhibit different patterns of functional connectivity or structural covariance.
Here, we propose a new measure based on “distance correlation”; a test of multivariate dependence of high di-
mensional vectors, which allows for both linear and non-linear dependencies. We used simulations to show
how distance correlation out-performs Pearson correlation in the face of inhomogeneous ROIs. To evaluate this
new measure on real data, we use resting-state fMRI scans and T1 structural scans from 2 sessions on each of
214 participants from the Cambridge Centre for Ageing & Neuroscience (Cam-CAN) project. Pearson correlation
and distance correlation showed similar average connectivity patterns, for both functional connectivity and
structural covariance. Nevertheless, distance correlation was shown to be 1) more reliable across sessions,
2)more similar across participants, and 3)more robust to different sets of ROIs.Moreover, we found that the sim-
ilarity between functional connectivity and structural covariance estimates was higher for distance correlation
compared to Pearson correlation.We also explored the relative effects of different preprocessing options andmo-
tion artefacts on functional connectivity. Because distance correlation is easy to implement and fast to compute, it
is a promising alternative to Pearson correlations for investigating ROI-based brain-wide connectivity patterns,
for functional as well as structural data.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The brain is a network of a large number of regions, whichmay sup-
port different (cognitive) processes, but nonetheless interact with each
other. In recent years, there has been much interest in the properties of
this network, such as its modular structure and the existence of hub re-
gions that help integrate information across brain regions (Bullmore
and Bassett, 2011; Sporns and Betzel, 2016; Sporns et al., 2007). Such
network analyses have become an important tool to characterize indi-
vidual differences related to cognitive function, age and mental health
(e.g. Alexander-Bloch et al., 2010; Brier et al., 2014; Crossley et al.,
2014; Geerligs et al., 2014; Spreng and Turner, 2013; van den Heuvel
et al., 2009). Three main, complementary techniques have been used

to examine the network structure obtained from magnetic resonance
imaging (MRI) of human participants. The first is diffusion-weighted
MRI, which can be used to estimate the integrity of white-matter tracts
between regions of interest (ROIs), but which is not considered here.
Second is functional MRI (fMRI), in which connectivity within an indi-
vidual is typically inferred by the correlation between time series of
neuronal activity in each ROI. Third is structural MRI, from which the
covariance between ROIs of a tissue property like grey matter volume
or thickness can be examined across participants, which may reflect
synchronized maturational changes in anatomically connected brain
regions (Mechelli, 2005). In the remainder of this manuscript we will
refer to these structural covariance analyses as estimates of structural
connectivity.

MRI images typically contain of the order of 100,000 voxels, and
there are several different parcellation schemes by which those voxels
are grouped into ROIs. Some of these parcellations are adaptive, based
on the data being analysed (Smith et al., 2013), but others typically
come from a priori definitions, based on neuroanatomy (e.g. Tzourio-
Mazoyer et al., 2002), task-based functional activations (e.g. Power
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et al., 2011) or prior functional connectivity results (e.g. Craddock et al.,
2012; Gordon et al., 2014). Different studies use different parcellations,
and ROIs selected on one criterion (e.g., neuroanatomy)may not respect
divisions according to another criterion (e.g., functional activity). Once
ROIs are defined, the relevant property of each ROI is normally reduced
to a univariate measure by averaging the properties of voxels within
that ROI (or by taking the first singular vector across voxels). Typically,
the strength of connections between ROIs is then measured by the nor-
malized covariance (Pearson correlation) acrossmultiple measurements
(time points or participants). Other methods have also been used, such
as mutual information and time-lagged measures such as Granger cau-
sality, but these do not perform as well on typical fMRI data (Smith
et al., 2011).

There are two distinct limitations to the ROI-based approach. First,
important information might be lost by reducing each ROI to one di-
mension, given that techniques such as multi-voxel pattern analysis
(MVPA) and representation similarity analysis (RSA) have demonstrat-
ed the importance of taking into account relative patterns across
voxels (Kriegeskorte et al., 2008; Norman et al., 2006). This is especially
likely for large ROIs, which are more likely to encompass distinct
functional sub-regions (Gordon et al., 2014; Park et al., 2013). This prob-
lem is compounded when the same ROIs are used across participants,
yet those participants have different functional organization, and/or
there are errors in the coregistration of brain regions across participants.
The second limitation is that covariance-based measures are not able
to capture non-linear interactions between regions, yet previous
studies have shown that shown that non-linear behaviour exists in re-
gional interactions (Hlinka et al., 2011; Lahaye et al., 2003; Xie et al.,
2008).

Here, we propose to use a different metric of connectivity that over-
comes some of these limitations (though ultimately there is no substi-
tute for good ROI definition). This metric is “distance correlation”
(Székely et al., 2007), which estimates themultivariate dependence be-
tween high dimensional vectors, allowing for both linear and non-linear
dependencies. Distance correlation therefore does not require reducing
ROIs to one dimension, e.g., by averaging. We start with simulations
showing how distance correlation out-performs Pearson correlation in
the face of inhomogeneous ROI, and how it behaves according to ROI
size, noise levels and temporal autocorrelation. We then apply distance
correlation to real data, calculating ROI-by-ROI connectivitymatrices for
both functional and structural connectivity, and compared them with
matrices obtained using the more standard Pearson correlation. More
specifically, for functional connectivity, we compared the i) reliability
across two scanning visits per participant, ii) similarity across a large
number of individuals, iii) robustness to different sets of ROIs, and
iv) robustness to different types of preprocessing and to effects of
motion. For structural connectivity, we also compared reliability
across two scanning visits, and furthermore,we compared the similarity
of structural connectivity matrices with functional connectivity
matrices.

2. Materials and methods

2.1. Participants

A sample of 236 participants (18–88 years old, M=53.8, SD=17.8,
119males and 117 females) were taken from Stage 3 of the population-
based sample of the Cambridge Centre for Ageing and Neuroscience
(CamCAN). Participants were included if no brain abnormalities were
detected, and if they completed both (f)MRI testing sessions. Partici-
pants had no contraindications to MRI, were native English-speakers,
had normal or corrected-to-normal vision and hearing, scored 25 or
higher on the mini mental state exam (MMSE; Folstein et al., 1975)
and had no neurological disorders (see Shafto et al., 2014, for further
details). Ethical approval for the study was obtained from the

Cambridgeshire 2 (now East of England - Cambridge Central) Research
Ethics Committee. Participants gave written informed consent.

2.2. fMRI data and image acquisition

Eyes-closed resting state functional magnetic resonance imaging
(fMRI) data were collected in two separate scanning sessions, which
were between three months and three years apart. MR data were col-
lected as part of more extensive scanning sessions in a 3 T Siemens
TIM Trio, with a 32 channel head-coil. The first scan lasted 8 min and
40 s (261 volumes) and the second scan lasted 5 min (152 volumes).
Each volume contained 32 axial slices (acquired in descending
order), with slice thickness of 3.7 mm and interslice gap of 20%
(for whole brain coverage including cerebellum; TR = 1970 ms;
TE = 30 ms; flip angle = 78 degrees; FOV = 192 mm × 192 mm;
voxel-size =3 mm × 3 mm × 4.44 mm). A high-resolution
(1 mm × 1 mm × 1 mm) T1-weighted Magnetization Prepared RApid
Gradient Echo (MPRAGE) image was acquired in both sessions. In the
first session, we additionally acquired a T2-weighted structural image
(1 mm × 1 mm × 1 mm) using a Sampling Perfection with Application
optimized Contrasts using different flip angle Evolution (SPACE)
sequence.

2.3. Data pre-processing

Pre-processing was performed using the SPM12 software (http://
www.fil.ion.ucl.ac.uk/spm), as called by the automatic analysis (AA)
batching system (http://imaging.mrc-cbu.cam.ac.uk/imaging/AA). For
full details, see Taylor et al. (in press). In brief, fieldmaps were used
to undistort the functional EPI images, which were then motion-
corrected and slice-time corrected. For the first session, the T1 and T2
images were combined in order to segment various tissue classes
using unified segmentation, including grey matter (GM), white matter
(WM) and cerebrospinal fluid (CSF). For the second session, only the
T1 images were used for segmentation. The GM and WM segments for
each participant were used to create a sample-specific anatomical tem-
plate, using the DARTEL procedure to optimize inter-participant align-
ment, separately for each session. The template for each session was
subsequently transformed into MNI space, using a 12-parameter affine
mapping. The EPI images were then coregistered to the T1 image, and
the DARTEL flowfields andMNI transformation applied to the EPI im-
ages. The segmented images were also used to create WM and cere-
brospinal fluid (CSF) masks for each participant by selecting only
voxels with less than 1% of grey matter and more than 80% of WM/
CSF. For the EPI images and the WM and CSF segments, we applied
the DARTEL deformations and MNI transformation to the original
images; for the structural connectivity analysis, we applied an addi-
tion modulation step (modulating by the Jacobean of the deforma-
tions) in order to preserve the amount of signal in the images
(similar to voxel-based morphometry analyses; Ashburner and
Friston, 2000).

2.4. Extended pre-processing and ROI extraction

To reduce the effects of motion on the functional connectivity
results, we used a combination of approaches. The first of these was to
apply the Wavelet Despike method for removing motion artefacts
from fMRI data without the need for data scrubbing (Patel et al.,
2014). The method detects irregular events at different frequencies by
identifying chains of outlying wavelet coefficients, and projects these
out of the voxel time series. The algorithm can remove both prolonged
motion artefacts, such as spin-history effects, as well as higher fre-
quency events such as spikes. The total amount of despiking per-
formed on a dataset is quantified by the percentage of voxels
containing a spike in that volume of data. Participants with an aver-
age spike percentage, in any of the mental states, of two standard

17L. Geerligs et al. / NeuroImage 135 (2016) 16–31

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://imaging.mrc-cbu.cam.ac.uk/imaging/AA


Download English Version:

https://daneshyari.com/en/article/6023210

Download Persian Version:

https://daneshyari.com/article/6023210

Daneshyari.com

https://daneshyari.com/en/article/6023210
https://daneshyari.com/article/6023210
https://daneshyari.com

