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The human cerebral cortex is marked by great complexity as well as substantial dynamic changes during early
postnatal development. To obtain a fairly comprehensive picture of its age-induced and/or disorder-related
cortical changes, one needs to match cortical surfaces to one another, while maximizing their anatomical
alignment. Methods that geodesically shoot surfaces into one another as currents (a distribution of oriented
normals) and varifolds (a distribution of non-oriented normals) provide an elegant Riemannian framework for
generic surface matching and reliable statistical analysis. However, both conventional current and varifold
matchingmethods have two key limitations. First, they only use the normals of the surface tomeasure its geom-
etry and guide thewarping process, which overlooks the importance of the orientations of the inherently convo-
luted cortical sulcal and gyral folds. Second, the ‘conversion’ of a surface into a current or a varifold operates at a
fixed scale under which geometric surface details will be neglected, which ignores the dynamic scales of cortical
foldings. To overcome these limitations and improve varifold-based cortical surface registration, we propose
two different strategies. The first strategy decomposes each cortical surface into its normal and tangent varifold
representations, by integrating principal curvature direction field into the varifold matching framework, thus
providing rich information of the orientation of cortical folding and better characterization of the complex
cortical geometry. The second strategy explores the informative cortical geometric features to perform a
dynamic-scalemeasurement of the cortical surface that depends on the local surface topography (e.g., principal
curvature), thereby we introduce the concept of a topography-based dynamic-scale varifold. We tested the pro-
posed varifold variants for registering 12 pairs of dynamically developing cortical surfaces from 0 to 6 months
of age. Both variants improved thematching accuracy in terms of closeness to the target surface and the goodness
of alignment with regional anatomical boundaries, when compared with three state-of-the-art methods:
(1) diffeomorphic spectral matching, (2) conventional current-based surface matching, and (3) conventional
varifold-based surface matching.
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1. Introduction

Studying cerebral cortex development across large-scale
imaging datasets stretched the frontiers of our understanding of
neurodevelopment and brain disorders (Dubois et al., 2008a,b, 2014;
Drobetz et al., 2014; Li et al., 2015; Iyer et al., 2015; Ming et al., 2015;
Tremblay & Deschamps, 2015; Shi et al., 2012b; Yan et al., 2015). Nota-
bly, these studies require a fundamental step which consists in accu-
rately and meaningfully “linking” these highly convoluted surfaces to
one another. This is referred to as registration or matching in medical
image analysis, which founds atlasing, group comparison and statistical
analysis of regional growth in a population of subjects. Due to the

remarkable convolution and inter-subject variability of cortical foldings,
volume-based warping typically produced poorly aligned sulcal and
gyral folds (Thompson & Toga, 1996). More sophisticated volume-
based cortical registration methods exploited the geometry of the sur-
face and defined local sulcal features to guide the harmonic mapping
between cortical hemispheres mapped into a unit square (Joshi et al.,
2005, 2007). However, Anticevic et al. demonstrated in (Anticevic
et al., 2008) the superiority of surface-based registration over volume-
based registration for aligning cortical sulci. Indeed, cortical surface-
based registration can better align the convoluted and variable cortical
folding as it better exploits the topology and topography of the cortex
during registration (Essen et al., 2012).

Early leading cortical surface matching tools such as Freesurfer
(Fischl et al., 1999) and Spherical Demons (Yeo et al., 2010) were
based on geometric features such as cortical curvature and sulcal
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depth to drive thewarping of spherical surfaces. More recently, amulti-
modal surface matching framework was proposed in (Robinson et al.,
2014), where they adapt the discrete Markov random field to spherical
surface registration, benefitting frommultivariate features. However, all
thesemethods (Fischl et al., 1999; Yeo et al., 2010; Robinson et al., 2014)
do not directly operate on the cortical surface, as theymap each cortical
hemisphere onto a sphere and then register them in the spherical space,
which inevitably introduces distortion to surface metrics. Recent solu-
tions that target exact matching relied on a spectral representation of
the geometric properties of the surface, where smooth correspondence
was generated between spatially smooth low-frequency harmonics
(or surface face vibration modes) (Lombaert et al., 2011; Lombaert
et al., 2013a). As an extension to this work, Lombaert et al. incorporated
more local geometric features in an exact surface matching framework,
which estimated a diffeomorphic correspondence map via a simple clos-
est neighbor search in the surface spectral domain (Lombaert et al.,
2013b). Its accuracy measured up to the performance of Freesurfer
(Fischl et al., 1999) and Spherical Demons (Yeo et al., 2010).

On the other hand, inexact surface matching methods based on
geodesically shooting one surface into another present a spatially
consistent way for both establishing diffeomorphic correspondences
between shapes and measuring their dissimilarity. In (Vaillant &
Glaunes, 2005; Durrleman et al., 2009), the current metric laid ground-
work for developing generic diffeomorphic surface registration and re-
gression models without the need to establish the point-to-point
surface landmark correspondence on the longitudinal shapes. One of
the key strengths of this mathematical model is that it allows to mea-
sure the dissimilarity between complex shapes of different dimensions
such as distributions of unlabelled points (e.g.,anatomical landmarks),
curves (e.g.,fiber tracts) and surfaces (e.g.,cortices); and thereby to si-
multaneously and consistently track local deformations in a set of multi-
dimensional shapes within the powerful large diffeomorphic deforma-
tion metric mapping (LDDMM) framework (Trouvé, 1998; Dupuis &
Grenander, 1998). This allows to perform statistics on the surface and
its diffeomorphic deformation as diffeomorphisms facilitate further sta-
tistical analysis and atlas building (Gori et al., 2013). One drawback of
the current-based shape representation model is that it annihilates the
sum of two shapes with opposing normals. Recently, Charon et al.
(Charon & Trouvé, 2013) solved this problem by proposing the use of
the varifold metric –a variant of the currentmetric– for matching shapes
with inconsistent orientations. Surfaces are encoded as a set of non-
oriented normals, which are embedded into a space endowed with
the varifold dissimilarity metric. Most importantly, varifold-based
shape matching is robustly and easily extendable to multimodal imag-
ing (e.g., white matter fibers (derived from DTI) encoded as 2D
varifolds), thus one could effectively embed any shape of any given
dimension into a common space of distributions, where they can be de-
formed, matched and compared (e.g., a set of anatomical shape com-
plexes (Durrleman et al., 2014)). Besides, surface representation as a
varifold is robust to mesh imperfections such as holes, spikes, inconsis-
tent orientation or irregular meshing (Durrleman et al., 2014).

However, the conventional varifold matching framework devel-
oped in (Charon & Trouvé, 2013; Durrleman et al., 2014) does not
consider the principal curvature direction of the deforming surface,
whereas this represents a key feature of the convoluted cortical sur-
face as it encodes the local orientation of sulcal and gyral folds that
marked previous work on the cortex (Boucher et al., 2009; Li et al.,
2010; Boucher et al., 2011). Furthermore, using the conventional
varifold metric to measure surfaces and estimate distance between
them operates at a fixed scale under which geometric surface details
(e.g., bumps) will be overlooked, thus ignoring the (spatially-vary-
ing) scales of cortical foldings. Indeed, the width of cortical folds
and their orientations change during development and diseases as
demonstrated in (Boucher et al., 2009; Boucher et al., 2011), hence
we refer to the changing cortical scales as ‘dynamic’ with regard to
location in space. Therefore, to better capture the cortical surface

geometry, one could integrate the folds scales and orientations into
the measurement metric –which is at the heart of this work. Herein,
we propose two different variants to further improve the conven-
tional varifold-based surface matching method introduced in
(Charon & Trouvé, 2013; Durrleman et al., 2014). For the first variant,
we add a novel multidirectional varifold surface representation
encoded by its principal curvature direction, which will be combined
to its normal varifold representation to solve a variational problem
for shape matching. For the second variant, we propose a novel
topography-based dynamic-scale varifold metric that measures the
surface at a dynamic scale that spatially varies with the surface
topography (e.g.,principal curvature). Finally, we compare the accu-
racy of the proposed variants for varifold-matching improvement
with: (1) diffeomorphic spectral cortical matching (Lombaert et al.,
2013b), (2) conventional current-based surface matching
(Durrleman et al., 2009), and (3) conventional varifold-based sur-
face matching methods (Charon & Trouvé, 2013; Durrleman et al.,
2014) in terms of geometric concordance between target and
warped shapes and also the alignment between the boundaries of
cortical regions. The proposed varifold variants can also be trans-
ferred to current-basedmatching frameworks. Of note, a preliminary
version of this manuscript was presented at MICCAI 2015 (Rekik
et al., 2015c). This submission was substantially improved and offers
new contributions in the following aspects: (1) introducing the
topography-based dynamic-scale varifold metric, (2) demonstrating
the outperformance of the proposed variants with respect to several
state-of-the-art methods, (3) inter-variant performance compari-
sons, and (4) a more detailed discussion and future directions.

2. Varifold-based surface matching

Geometric measure theory provides powerful tools to build dissim-
ilaritymetrics between shapes represented asmeasureswithout requir-
ing point-to-point correspondences. More recently, the approach of
varifolds was introduced in geometric measure theory and adopted to
solve shape matching problems in (Charon & Trouvé, 2013;
Durrleman et al., 2014) to overcome orientation issues in current theory
(Durrleman et al., 2009). Using measures makes it much more conve-
nient to define metrics without using parametrizations. We first intro-
duce the key ingredients of representing a shape as a varifold and
performing pair-wise varifold matching.

2.1. Measuring a surface as a varifold

Measuring a surface S as a varifold is based on embedding the sur-
face space into a Reproducing Kernel Hilbert Space (RKHS) E, where it

is encoded using a set of its nonoriented unit normals nðxÞ$
attached at

each of its vertices x (Fig. 1). This kernel-based embedding allows to de-
fine a proper distance between different embedded surfaces. The
nonoriented vectors that encode the surface are defined as elements
of the space of non-oriented tangent spacesGd(E) (Grassmanmanifold).
In the case of surfaces, Gd is defined as the quotient of the unit sphere S
in ℝ3 by two group elements {± Idℝ3}, where Idℝ3 is the space of unit

identity 3D vectors. An element u
$
in this quotient space Gd(E) belongs

to the class of equivalent elements (u,u/|u | ,−u/|u | ). Any surface is
thereby represented as a distribution of non-oriented spaces tangent
to each of its vertices and spread out in the embedding space E.

A varifold surface is measured in a similar way that we measure a
current surface, except that the reproducing positive Gaussian kernel
ke spanning the space E is augmented by a linear continuous a Cauchy-
Binet kernel kt on the Grassmanmanifold Gd(E), which leads to ‘annihi-
lating’ the orientation of the normals, thereby producing a nonoriented
measurement of the surface (Charon & Trouvé, 2013). In a continuous
setting, a varifold is defined as a continuous linear form that integrates

153I. Rekik et al. / NeuroImage 135 (2016) 152–162



Download English Version:

https://daneshyari.com/en/article/6023224

Download Persian Version:

https://daneshyari.com/article/6023224

Daneshyari.com

https://daneshyari.com/en/article/6023224
https://daneshyari.com/article/6023224
https://daneshyari.com

