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13Representational similarity analysis of activation patterns has become an increasingly important tool for studying
14brain representations. The dissimilarity between two patterns is commonly quantifiedby the correlation distance
15or the accuracy of a linear classifier. However, there aremany differentways tomeasure pattern dissimilarity and
16little is known about their relative reliability. Here, we compare the reliability of three classes of dissimilarity
17measure: classification accuracy, Euclidean/Mahalanobis distance, and Pearson correlation distance. Using simu-
18lations and four real functional magnetic resonance imaging (fMRI) datasets, we demonstrate that continuous
19dissimilaritymeasures are substantiallymore reliable than the classification accuracy. The difference in reliability
20can be explainedby two characteristics of classifiers: discretization and susceptibility of the discriminant function
21to shifts of the pattern ensemble between runs. Reliability can be further improved through multivariate noise
22normalization for all measures. Finally, unlike conventional distance measures, crossvalidated distances provide
23unbiased estimates of pattern dissimilarity on a ratio scale, thus providing an interpretable zero point. Overall,
24our results indicate that the crossvalidatedMahalanobis distance is preferable to both the classification accuracy
25and the correlation distance for characterizing representational geometries.
26© 2015 Published by Elsevier Inc.
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41 Introduction

42 It has become increasingly popular to analyze functional magnetic
43 resonance imaging (fMRI) data using multi-voxel pattern analysis
44 (MVPA). In MVPA, activation patterns are analyzed using either classifi-
45 cation (Cox and Savoy, 2003; Haxby et al., 2001) or representational
46 similarity analysis (RSA, Kriegeskorte et al., 2008). Both approaches
47 quantitatively measure the dissimilarity of fMRI response patterns for
48 pairs of conditions. All possible pairwise dissimilarity values of an ex-
49 periment can be assembled in a pairwise decoding accuracy matrix or
50 representational dissimilarity matrix (RDM).
51 One important decision in RSA is the choice of dissimilaritymeasure.
52 Popular dissimilarity measures are the percentage of correct pairwise
53 classifications (accuracy) and continuous distance measures, such as
54 the Pearson correlation distance, the Euclidean distance, and the
55 Mahalanobis distance. In this paper we provide a careful evaluation of
56 the reliability of these dissimilarity measures, i.e. how reliable a mea-
57 sure is over replications of the experiment.

58In evaluating reliability, it is important to consider the inferential
59aim of the analysis. One hypothesis that a researcher may want to test
60is that the patterns associated with conditions A and B are more similar
61than those associatedwith conditions C andD. This hypothesis concerns
62only the ranks of the dissimilarities. A more specific hypothesis would
63be that the dissimilarity between the patterns for conditions A and B
64is twice as large as the dissimilarity between the patterns for C and D.
65Here it is necessary that the dissimilarity measure have a meaningful
66zero point, with zero indicating that the two patterns are not different.
67However, distances, by definition, are non-negative and always larger
68than zero if estimated from noisy data. Thus, even if the true patterns
69are not different, the estimated distance will be larger than zero. The
70noise creates a positive bias, which will rise with the noise level. As
71we will show in the results, the bias can be removed by crossvalidation
72(Allefeld and Haynes, 2014; Nili et al., 2014; Kriegeskorte et al., 2007).
73Crossvalidated distance estimator are unbiased, i.e. their expected
74value equals the true distance and is zero if the two patterns are not dif-
75ferent (see Q3Crossvalidation section). As a consequence, crossvalidated
76distance estimators enable us to interpret ratios between distances.
77In this paper, we compare the reliability of the Euclidean distance,
78theMahalanobis distance, and the correlation distance and study the in-
79fluence of univariate andmultivariate noise normalization on RDM reli-
80ability. We also consider crossvalidated versions of the Mahalanobis
81distance (including the linear-discriminant t value; Nili et al., 2014;
82Kriegeskorte et al., 2007). Finally, we compare continuous distance
83measures to classification accuracies from linear discriminant analysis
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84 (LDA) and support vector machines (SVM). Overall, our results strongly
85 suggest the use of continuous crossvalidated distance estimators with
86 multivariate noise normalization to measure brain representational
87 dissimilarities.

88 Materials and methods

89 The Euclidean distance

90 In RSA,wewant to calculate thedistance between the activation pat-
91 terns bk and bj, corresponding to two of k = 1,…,K conditions. An acti-
92 vation pattern usually consist of the regression coefficients from a
93 general linearmodel (GLM),which represent the response of the voxels
94 p= 1,…,P to condition k. The Euclidean distance between two patterns
95 in a P-dimensional voxel space, with the activity of each voxel forming a
96 separate dimension, is defined analogously to the familiar distance in
97 two dimensions. The squared Euclidean distance d2 between the two
98 row vectors bk and bj is:

d2Euclidean bk;b j
� � ¼ b j−bkk

�� 2 ¼ b j−bk
� �

b j−bk
� �T ¼ cBBTcT ð1Þ

100100

where the last term represents a compact form obtained by
101 assembling the activation patterns into a K × P Matrix B and applying
102 a 1 × K contrast vector c, which contains zeros except for cj = 1 and
103 ck = −1.
104 To visualize the pattern distances, imagine each pattern as a vector
105 extending from the origin to point bk, where the origin of the pattern
106 space is usually determined by the implicit baseline estimate of the
107 GLM. The Euclidean distance between the endpoints of two vectors is
108 independent of the origin (Figs. 1A,B). This might be advantageous if
109 the baseline was not reliably estimated or if it cannot be meaningfully
110 defined.

111The Pearson correlation distance

112Another measure of the similarity of bk and bj is their Pearson corre-
113lation r. The correlation is related to a slightly simpler measure, which
114can be more easily understood graphically: the cosine of the angle be-
115tween the vectors (Fig. 1A). The cosine can be obtained by normalizing
116bk and bj by their respective L2-norms and subsequently calculating
117their inner product. We can then obtain a distance measure (known
118as cosine distance) by taking the complement:

dCosine bk;b j
� � ¼ 1−

bk;b j
� �
bkk k b j

�� �� ¼ 1− cos ∠bk;b j
� �

: ð2Þ
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The inner product detects congruent trends between bk and bj (i.e.
121when bp,k tends to be high, bp,j tends to be high as well, and vice
122versa). The normalization makes the cosine distance, unlike the
123Euclidean distance, invariant to changes in scaling (or length) of b
124(Fig. 1C).
125The correlation distance is equivalent to the cosine distance after

126subtracting the mean value from each voxel pattern. If b is the voxel
127mean and 1 is a 1 × P row vector of ones, the correlation distance is de-
128fined as:

~b k
¼ bk−bk1 ~b j ¼ b j−bj1dCorrelation bk;b j

� �
¼ 1−

~bk;
~b j

D E
~bk

��� ��� ~b j

��� ��� ¼ 1− cos ∠~bk;
~b j

� �
ð3Þ
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The cosine and correlation distance are zero if two normalized pat-
131terns are identical. In the cosine similarity, only vector length is divisive-
132ly normalized. In the correlation distance, the mean is first subtracted
133before divisive length normalization, making it invariant to both chang-
134es in the mean and variance of bk across voxels. Importantly, both the
135cosine and correlation distancedependon the implicit baseline estimate
136of the GLM (Fig. 1B). Therefore, shifts in the origin will affect the overall
137distance structure.

138The effect of mean pattern subtraction (cocktail-blank removal)

139Before submitting the patterns to MVPA, it is common practice to
140subtract the mean pattern, i.e. the mean across conditions for each
141voxel, from each response pattern (Misaki et al., 2010; Op de Beeck,
1422010; Pietrini et al., 2004; Williams et al., 2008, 2007). This normaliza-
143tion step is sometimes called “cocktail-blank removal”. Removal of the
144mean pattern has a very different effect from removing the mean
145value (i.e. the mean of each condition, averaged across voxels, Eq. (3)).
146Mean pattern subtraction effectively moves the origin of the pattern
147space to lie in themeanpattern of all conditions (Fig. 1D). The reasoning
148behind this normalization step is that the response patternsmay share a
149common component, which will increase all correlations and hence de-
150crease the correlation distance. Mean pattern subtraction removes the
151influence of this common response pattern. However, the change in or-
152igin will cause unrelated patterns to be negatively correlated (Garrido
153et al., 2013; Diedrichsen et al., 2011). In the extreme case of only two
154conditions, the angle between them will always be 180 degrees and
155the cosine of the angle (and also the correlation) will be −1 (Fig. 1D).
156This can change the representational structure substantially, even
157when only considering the ranks of the distances. Unlike the correlation
158distance, the Euclidean distance is unaffected by mean pattern
159subtraction, as it does not depend on the origin of the coordinate system
160(Fig 1D).
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Fig. 1. Euclidean and angle-based distance inMVPA. (A) An fMRI pattern space laid out by
two voxels (v1 and v2; note that the typical pattern space will often have N50 dimen-
sions). Two pattern vectors extend from the origin. The Euclidean distance is the distance
between the patterns. The cosine distance (as well as the Pearson correlation distance)
measures pattern dissimilarity as a function of the angle enclosed by the vectors.
(B) Shifts of the origin (i.e. the fMRI baseline) of the pattern space influence the angle
(red) between the two vectors and hence the correlation distance, but not the Euclidean
distance (gray). (C) Changes in the length of the two vectors (multiplicative scaling) influ-
ence the Euclidean distance (red) between the two vectors, but not the angle (gray).
(D) Themean pattern of the two conditions has been subtracted (cocktail blank removal).
The two vectors now extend in opposite directions from the origin, causing the cosine of
the angle (red) and the correlation to become−1.
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