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17Wepropose a framework for developing a comprehensive biophysical model that could predict and simulate re-
18alistic longitudinalMRIs of patients with Alzheimer's disease (AD). The framework includes threemajor building
19blocks: i) atrophy generation, ii) brain deformation, and iii) realistic MRI generation. Within this framework,
20this paper focuses on a detailed implementation of the brain deformation block with a carefully designed
21biomechanics-based tissue loss model. For a given baseline brain MRI, the model yields a deformation field im-
22posing the desired atrophy at each voxel of the brain parenchyma while allowing the CSF to expand as required
23to globally compensate for the locally prescribed volume loss. Our approach is inspired by biomechanical princi-
24ples and involves a system of equations similar to Stokes equations in fluidmechanics but with the presence of a
25non-zeromass source term.We use this model to simulate longitudinal MRIs by prescribing complex patterns of
26atrophy. We present experiments that provide an insight into the role of different biomechanical parameters in
27the model. The model allows simulating images with exactly the same tissue atrophy but with different under-
28lying deformation fields in the image. We explore the influence of different spatial distributions of atrophy on
29the image appearance and on themeasurements of atrophy reported by various global and local atrophy estima-
30tion algorithms. We also present a pipeline that allows evaluating atrophy estimation algorithms by simulating
31longitudinal MRIs from large number of real subject MRIs with complex subject-specific atrophy patterns. The
32proposed framework could help understand the implications of different model assumptions, regularization
33choices, and spatial priors for the detection and measurement of brain atrophy from longitudinal brain MRIs.
34© 2016 Published by Elsevier Inc.
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45 Introduction

46 Alzheimer's disease (AD) is one of the most common types of de-
47 mentia. It is a neurodegenerative disease that progresses gradually
48 over several years with the accumulation of neurofibrillary tangles
49 (NFTs) and amyloid-β (A-β) plaques (Braak and Braak, 1991). These
50 microscopic neurobiological changes are followed by the progressive
51 neuronal damage that leads to the atrophy of the brain tissue. The atro-
52 phy or the volume changes of brain tissue is a macroscopic change that
53 structural magnetic resonance imaging (MRI) can estimate in different
54 brain regions (Frisoni et al., 2010).
55 There is no treatment of AD so far, partly because the exact mecha-
56 nisms of the disease are not well known. Nevertheless, there has been
57 several clinical trials and disease-modifying drug development efforts
58 in the past three decades (Schneider et al., 2014). Since the external
59 symptoms appear several years after the changes seen in imaging
60 (Frisoni et al., 2010), longitudinal images can play an important role in
61 the development of disease-modifying drugs. So far, structural MRIs
62 have primarily been used for estimating local volume changes in

63individual AD patients; these measurements have been used to formu-
64late hypotheses on the temporal dynamics of AD.
65An interesting alternative avenue consists inmodeling the tissue loss
66process in order to compare (in a forward modeling setting) different
67hypotheses for the prediction of patient-specific time series MRIs. The
68ability of developing realistic individual models of brain shape changes
69to predict patient-specific longitudinal MRIs can have far reaching con-
70sequences. For instance, the patient-specific AD trajectories predicted
71by the model could be useful in monitoring drug effects in AD patients
72by comparing them against the observed brain changes.
73It is nevertheless very challenging to develop a comprehensive
74model that can predict realistic synthetic time series of MRIs following
75AD patient's trajectory. Modeling neurodegeneration is a complex task
76requiring a hierarchy of models accounting, respectively, i) for how
77and where neuronal death occurs, ii) for its effects on brain shape
78changes and iii) for the subsequent brain appearance in longitudinal
79MRI. In Fig. 1, we show a breakdown of this complex process in three
80major modeling blocks which represents, at a very high level, the com-
81prehensive modeling and simulation of realistic longitudinal MRIs in
82AD. The first block abstracts the multi-scale models of neuronal death
83at the cellular level into a macroscopic map of how the atrophy spreads
84spatially and evolves temporally at each voxel of the brain MRI.
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85 Knowing the patterns of local neuronal deaths and local volume loss
86 is just one aspect of the problem; we also need to model the conse-
87 quences of neuronal loss on brain shape changes. This is represented
88 by the block Brain Deformation in Fig. 1. We believe that biomechanics
89 of brain tissue does play an important role in the way brain's shape
90 change as a result of local volume loss, and this topic is going to be
91 one of the main subjects of this paper.
92 Finally, time-series of structuralMRIs capture thebrain shape chang-
93 es but also contain additional noise, partial volume effects, and image
94 acquisition artifacts. This is also an important aspect to consider when
95 modeling and simulating the appearance of change in longitudinal
96 MRIs for AD patients. This part is shown in Realistic MRI generation.
97 Furthermore, a proper optimization frameworkmight also be necessary
98 to estimate the patient-specific parameters of the models if we are to
99 perform model personalization. This is represented by a feedback loop
100 in Fig. 1.
101 A number of atrophy simulators (Smith et al., 2003; Camara et al.,
102 2006; Karaçali and Davatzikos, 2006; Pieperhoff et al., 2008; Sharma
103 et al., 2010) have been proposed in the literature. These simulators ad-
104 dress either just the Brain Deformation or both the Brain Deformation
105 and Realistic MRI generation blocks in Fig. 1. They propose different
106 methods to simulate time-series images with a desired volume change.
107 All of these simulators were developed with the objective of evaluating
108 atrophy estimation algorithms. We can broadly distinguish two major
109 approaches used in such simulators: Jacobian based, and biomechanical
110 models.
111 In Jacobian-based methods (Karaçali and Davatzikos, 2006;
112 Pieperhoff et al., 2008; Sharma et al., 2010), the desired level of atrophy
113 is set at each voxel, and the deformation that best approximates the
114 prescribed level of atrophy is found. Optimization of the deformation in-
115 volves regularization to enforce the smoothness of the transformation
116 and topology preservation. These simulation approaches have a number
117 of limitations, which prevent their use and generalization in modeling
118 oriented applications. The main issues that we identified are the
119 following:

120 Plausibility and interpretation

121 The modeling assumptions and the regularization parameters of
122 the energy minimization cannot be easily linked to the biophysical
123 and mechanical process of tissue deformation. The choice of certain
124 regularizations such as topology preservation can also have some
125 undesirable side effects such as making it difficult to simulate the
126 opening up of sulci.

127Spatially varying tissue properties

128Brain tissue and CSF are considered to respond to the volume change
129with the same lawwhich is not the case in reality. Indeed, while neuro-
130nal loss in brain tissue is a gradual process, the CSF is replaced three to
131four times with the production of about 500–600 ml per day (Damkier
132et al., 2013). Jacobian-based approaches with uniform tissue properties
133are thus limited to explore questions such as: do different brain regions
134such as brain stem, cerebellum, cortex, etc., respond with physical de-
135formation in the same way to the neuronal deaths and local volume
136loss? Can we have parameters with a physical meaning for different
137brain tissue types that change the deformation we get even for exactly
138the same atrophy pattern? If tissues respond differently to the same
139amount of volume loss in brain, these models cannot accurately model
140the resulting shape changes and on the appearance of time-series
141MRIs unless the regularization is made spatially varying.

142Skull invariance

143In AD, the brain deforms but the skull is rigid and hence the defor-
144mation model should not allow skull to move. The skull invariance is
145not imposed in (Karaçali and Davatzikos, 2006); In Sharma et al.
146(2010), as the authors show, imposing skull invariance results in larger
147error in the obtained Jacobian near the skull. Since the cortical surface
148lying near the skull is an important area for AD, it is desirable not to
149have error in the obtained Jacobian in these areas. Finally, when only
150volume loss is prescribed, as seems to be the case in the evaluation ex-
151periments of (Sharma et al., 2010, 2013), it is not clear which regions of
152the brain expand to compensate for the volume loss since the volume
153within the skull must be constant when skull invariance is imposed.
154The spatial distribution of the resulting non-zero error in the desired
155vs. obtained Jacobian map is not easy to control in this case.
156Biomechanical models generate tissue deformation based on
157biomechanical principles. As far as we know, the only model proposed
158so far for AD application other than the one we present here was a
159thermoelastic one (Smith et al., 2003; Camara et al., 2006). In this
160thermoelastic model, one defines the volume changes in particular
161structures and tissues of a meshed brain by assigning different thermal
162coefficients. Thermoelastic model of tissue deformation is solved using
163finite element method (FEM) to obtain a deformation field. To simulate
164time series of images, the deformation field interpolated from themesh
165to input baseline image is used. An important limitation of this method
166is that it requires estimating regional thermal coefficients based on the
167desired volume changes which makes it difficult to prescribe complex
168voxel-wise atrophy patterns accurately. Although different tissue
169types can be differently modeled by considering tissue-specific values
170of thermo-elastic constants, themeaning of these parameters is difficult
171to link to the AD process. Furthermore, the variability of the resulting
172brain deformation depending on the choice of the tissue-specific pa-
173rameters has not been investigated. Finally, FEM involves moving back
174and forth from voxels of patients MRI to reference labeled 3D mesh
175which creates numerical difficulties and inaccuracies in the model
176personalization.
177In Khanal et al. (2014), we proposed a proof of concept for a new
178biomechanics-based tissue loss model that addresses the limitations of
179the previous simulators discussed above. This biophysically plausible
180model of brain deformation due to atrophy is constrained to fit a pre-
181scribed atrophy rate at each voxel of the parenchyma. In this work,
182after analyzing in detail the modeling assumptions, we provide a thor-
183ough derivation of the mathematical formulation and of the numerical
184implementation. There is evidence that endogenous mechanical forces
185at the cellular level influence brain structure and function. Although
186the detailed mechanisms of these interaction still deserve further
187investigation (Tyler, 2012; Mueller and Tyler, 2015), it is clear that
188they play a role at the macroscopic level which is the scale where we
189observe changes in the structural MRIs.

Fig. 1. High level systems diagram for modeling and simulation of longitudinal MRIs in
AD patients. Spatial and temporal distribution of neuronal deaths is represented in
atrophy generation block which causes the brain shape changes represented in brain
deformation block. This deformation along with the MRI acquisition conditions
variability result intensity change in time series structural MRI of AD patients. The error
in predicted follow-up from the actual observed follow-up MRI could also be used to
optimize for the parameters of the developed models using a feedback system as shown
above.
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