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Recent neuroimaging studies have demonstrated that the network consisting of the right anterior insula (rAI),
left anterior insula (lAI) and dorsal anterior cingulate cortex (dACC) is activated in sensory stimulus-guided
goal-directed behaviors. This network is often known as the salience network (SN).When andhow a sensory sig-
nal enters and organizes within SN before reaching the central executive network including the prefrontal corti-
ces is still a mystery. Previous electrophysiological studies focused on individual nodes of SN, either on dACC or
rAI, have reports of conflicting findings of the earliest cortical activity within the network. Functional magnetic
resonance imaging (fMRI) studies are not able to answer these questions in the time-scales of human sensory
perception and decision-making. Here, using clear and noisy face-house image categorization tasks and human
scalp electroencephalography (EEG) recordings combined with source reconstruction techniques, we study
when and how oscillatory activity organizes SN during a perceptual decision. We uncovered that the beta-
band (13–30 Hz) oscillations bound SN, became most active around 100 ms after the stimulus onset and the
rAI acted as a main outflow hub within SN for easier decision making task. The SN activities (Granger causality
measures) were negatively correlated with the decision response time (decision difficulty). These findings sug-
gest that the SN activity precedes the executive control inmediating sensory and cognitive processing to arrive at
visual perceptual decisions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The salience network (SN), consisting of the right anterior insula
(rAI), left anterior insula (lAI) and dorsal anterior cingulate cortex
(dACC) (Ham et al., 2013; Seeley et al., 2007), responds to behaviorally
salient events (Seeley et al., 2007). It plays a crucial role in integrating
sensory stimuli to initiate cognitive control (Menon and Uddin, 2010),
to implement andmaintain task sets (Dosenbach et al., 2006), and to co-
ordinate behavioral responses (Medford and Critchley, 2010). When
and how a sensory signal enters and organizes within SN in a sensory-
driven, goal-directed task is not understood. Such understanding can
help predict impending perceptual decisions and task executions that
involve the prefrontal cortex.

There are twomain competing theories that explain the possible ‘driv-
ing hub’ of the SN. First theory proposes that the dACC monitors perfor-
mance and signals the need for behavioral adaptation (Ridderinkhof
et al., 2004). Activity in the dACC signals the need for enhanced cognitive
control, and interactions between the dACC and the lateral prefrontal
structures implement subsequent behavioral changes (Egner, 2009;
Ridderinkhof et al., 2004). In contrast, the second theory suggests that

the rAI is a ‘cortical outflow hub’ of the SN and it coordinates a change
in activity across multiple neurocognitive networks, such as the default
mode network (DMN) and central executive network (CEN) (Chand
and Dhamala, 2015; Bonnelle et al., 2012; Menon and Uddin, 2010;
Sridharan et al., 2008). Diffusion tensor imaging (DTI) study has demon-
strated that the structural integrity of the white matter connection be-
tween the rAI and the dACC predicts behavioral and physiological
abnormalities after traumatic brain injury (Bonnelle et al., 2012). Previous
investigations using blood oxygenation level-dependent (BOLD) changes
in functionalmagnetic resonance imaging (fMRI) showed that the rAI, not
the dACC, drives the SN (Ham et al., 2013; Sridharan et al., 2008) and fur-
ther suggested that a change in the effective connectivity of the dACCwas
associatedwith behavioral adaptation (Ham et al., 2013). As BOLD hemo-
dynamic responses are sluggish, it might in fact include processes that
happen on longer time-scale (seconds) and, if so, the ‘driving hub’ of
the SNmight even change inmillisecond time-scale of neuronal activities.
The studies mentioned above (Debener et al., 2005; Egner, 2009; Ham
et al., 2013; Sridharan et al., 2008) had reports of conflicting findings of
the earliest cortical activity. Therefore, how a sensory signal enters SN
and organizes within before reaching the prefrontal cortex for central ex-
ecutive processing in the time-scales of human sensory perception and
cognition has remained as amystery.We seek to resolve these conflicting
reports considering both anterior insulae and dACC in millisecond time-
scale. In particular, how the cortical areas of the SN interact, what the
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temporal flow of underlying overall activity in these cortical areas is, and
what frequency band(s) of information flow binds the SN are largely
unknown.

As the dACC, rAI and lAI are often co-activated, it had been hard to
disentangle their causal features (Ham et al., 2013), specifically on
longer time-scale measures such as from fMRI. In this study, we record-
ed human scalp electroencephalography (EEG), reconstructed source
waveforms and investigated the causal relationships between the
areas of the SN using spectral Granger causality (GC) (Dhamala et al.,
2008a, 2008b). In this EEG experiment, we used the standard face-
house image categorization tasks and studied the temporal evolution
of activity in the salience nodes and the patterns of oscillatory network
activity flow binding SN nodes in a network. Adding noise to clear im-
ages, three noise levels of stimuli were created to examine whether a
difficult task (or difficult decision)modulates the network activity flow.

2. Materials and methods

2.1. Participants

Twenty-six neurologically healthy human volunteers (21 males, 5
females) of age ranged from twenty-two to thirty-eight years (mean:
26.3 years, standard deviation: 4.7 years) participated for this study. A
written informed consent was collected from the participants prior to
data collection. The experimental protocol was approved from Institu-
tional Review Board of Georgia State University. Three participants
were excluded from the final analyses because of behavior performance
and/or unmanageable artifacts and noise present in their EEG data.

2.2. Stimuli

We used total twenty-eight images of faces and houses (14 images
of each category). Face images were from the Ekman series (Ekman
and Friesen, 1976). Fast Fourier transforms (FFT) of these images were
computed, providing twenty-eight magnitude and twenty-eight phase
matrices. The average magnitude matrix of this set was stored.
Stimulus-images were produced from the inverse FFT (IFFT) of average
magnitude matrix and individual phase matrices. The phase matrix
used for the IFFT was a linear combination of the original phase matrix
computed during the forward Fourier transforms and a random Gauss-
ian noise matrix. The resulting images were equalized for luminance
and contrast as in the prior studies (Heekeren et al., 2004, 2008;
Rainer andMiller, 2000). Finally, the stimuli consisted of three different
noise-levels: 0%, 40% and 55% (i.e., clear stimuli, 40% noisy stimuli, and
55% noisy stimuli). Those steps were performed using Matlab scripts.
The E-Prime 2.0 software was used to display the stimuli and control
the task sequences.

2.3. Experimental design

Prior to experimental task, the participants were briefly explained
about the task paradigm. Participant sat in a dark room with the only
source of light from the experimenter's computer screen. The same
computer screen with the same display settings was used throughout
the experiment. However, we did not explicitly calculate voltage/lumi-
nance functions for gamma correction as specified by the relations be-
tween RGB (red-blue-green) and luminance values, which are device
dependent. The stimulus viewing distance was ~60 cm (chin rest).
Fig. 1 shows a schematic of experimental paradigm used. Experiment
consisted of 4 blocks with 168 trials in each block. The stimuli were ran-
domized but balanced across blocks in presentation. The experiment
consisted of total 672 trials with 224 trials for each noise level. On
each trial, a small fixation cross (‘+’ in the middle of the screen) was
presented for 500 ms. Then a stimulus was presented for 150 ms,
followed by black screen with question mark (‘?’) for 1500 ms during
which time participants were allowed to indicate their decision (either

face or house) by keyboard button press. The responses after that delay
were considered incorrect.

2.4. Data acquisition and preprocessing

EEG data were acquired with a 64-channel EEG system from Brain
Vision LLC (http://www.brainvision.com). Analog signal was digitized
at 500 Hz. The impedances of each electrode were kept below 10 kΩ,
and the participants were asked to minimize blinking, head move-
ments, and swallowing. EEG data were band-pass filtered between 1
and 100 Hz, and notch filtered to remove 60 Hz AC-line noises. The
eye blinkings were removed using independent component analysis
(ICA)-based ocular correction. Data from bad electrodeswere discarded
and replaced, when appropriate, by spatial interpolation from the
neighboring working electrodes. These preprocessing steps were done
using Brain Vision Analyzer 2.0 (http://www.brainproducts.com).

2.5. Data analysis

The preprocessed EEG data were analyzed in the following main
steps:

(1) Computation of ERPs: Continuous EEG data were segmented into
trials of 300 ms duration (post-stimulus: 0 to 300 ms) based on
the stimulus onset times as a reference. The trials that had
three standard deviations below or above the global mean across
time in each subject were considered as outliers (Junghofer et al.,
2000) and they were discarded from the subsequent analysis.

(2) LORETA EEG-sources and single-trials source waveforms recon-
struction: All correct trials (ERPs for correct percept) from all
three conditions were grand averaged and imported to BESA
software version 5.3.7 (www.besa.de) to reconstruct EEG
sources. We used the low resolution electromagnetic tomogra-
phy (LORETA) (Pascual-Marqui et al., 1999, 1994), which is also
referred as Laplacian weighted minimum norm, to reconstruct
the EEG sources. LORETA is an extensively used source locali-
zation technique in EEG studies for both cortical and deep
brain structures (Clemens et al., 2010; Herrmann et al.,
2005; Jones and Bhattacharya, 2012; Thatcher et al., 2014;
Velikova et al., 2010), including insula and hippocampus
(Jones and Bhattacharya, 2012; Thatcher et al., 2014;
Velikova et al., 2010). Depth weighting strategy implemented
in LORETA overcomes the problem of surface-restricted localiza-
tion methods, such as minimum norm estimates (MNE) (Michel
et al., 2004; Painold et al., 2011; Pascual-Marqui et al., 1999).
LORETA computes inverse solution at 2394 voxels with spatial
resolutions of 7 mm in the Talairach Atlas (Pascual-Marqui
et al., 1999, 1994). It is based on the assumption that the
smoothest of all possible neural activity distributions is the
most plausible one. This assumption is also supported by electro-
physiology, where neighboring neuronal populations show
highly correlated activity while EEG-LORETA results are the ac-
tivity rendered byneighboring voxelswithmaximally similar ac-
tivity (Haalman and Vaadia, 1997; Herrmann et al., 2005;Michel
et al., 2004). Since functionally very distinct areas can be ana-
tomically very close (e.g., the medial parts of the two hemi-
spheres), LORETA can produce the results that include the two
hemispheres (Fig. S1: activity in V1). Therefore, the results
should be interpreted with caution and simultaneous EEG-fMRI
recordings could be a good choice in such case.
Locations of sources can be constrained to the cortical surface
and their orientations perpendicular to the local cortical surface
based on neurophysiological information that the sources of
EEG are postsynaptic currents in cortical pyramidal cell, and
that the direction of these currents is perpendicular to the corti-
cal surface (Dale and Sereno, 1993; Hamalainen et al., 1993).
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