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20Due to their data-driven nature, multivariate methods such as canonical correlation analysis (CCA) have proven
21very useful for fusion ofmultimodal neurological data. However, being able to determine the degree of similarity
22between datasets and appropriate order selection are crucial to the success of such techniques. The standard
23methods for calculating the order of multimodal data focus only on sources with the greatest individual energy
24and ignore relations across datasets. Additionally, these techniques as well as the most widely-used methods
25for determining the degree of similarity between datasets assume sufficient sample support and are not effective
26in the sample-poor regime. In this paper, we propose to jointly estimate the degree of similarity between datasets
27and their order when few samples are present using principal component analysis and canonical correlation
28analysis (PCA-CCA). By considering these two problems simultaneously, we are able to minimize the assump-
29tions placed on the data and achieve superior performance in the sample-poor regime compared to traditional
30techniques. We apply PCA-CCA to the pairwise combinations of functional magnetic resonance imaging
31(fMRI), structural magnetic resonance imaging (sMRI), and electroencephalogram (EEG) data drawn from pa-
32tients with schizophrenia and healthy controls while performing an auditory oddball task. The PCA-CCA results
33indicate that the fMRI and sMRI datasets are the most similar, whereas the sMRI and EEG datasets share the
34least similarity. We also demonstrate that the degree of similarity obtained by PCA-CCA is highly predictive of
35the degree of significance found for components generated using CCA.
36© 2016 Published by Elsevier Inc.
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48 1. Introduction

49 The collection of data frommultiplemodalities has become common
50 in neurological studies, since different modalities are expected to pro-
51 vide complementary views of complicated systems, such as the study
52 of brain activity (James & Dasarathy, 2014). Thus, full utilization of all
53 common information forms the fundamental goal of performing a
54 joint analysis on multimodal data. Since little is known about the
55 intermodality relationships, it is important to minimize the underlying
56 assumptions placed on the data and let the data “speak for itself.” Be-
57 cause of this fact and their ability to treat separate modalities in a sym-
58 metric manner, multivariate data-driven methods have proven to be
59 quite popular for the fusion of multimodal neurological data, see e .g.,
60 (James & Dasarathy, 2014; Calhoun & Adal, 2009; Adal et al., 2015). To
61 this end, canonical correlation analysis (CCA),whichmaximizes the cor-
62 relation of sources across datasets (Hotelling, 1936), has proven to be an
63 effective multivariate and data-driven fusion method, see e.g., (Adal

64et al., 2015; Correa et al., 2008; Sui et al., 2010; Chen et al., 2014). How-
65ever, if the covariances are unknown and must be estimated from the
66samples, then CCA requires sufficient sample support (Pezeshki et al.,
672004). This is particularly an issue when performing multimodal data
68fusion, since the number of samples, i .e. subjects, is typically much
69less than the dimension of the neurological data that is used. Thus, spe-
70cial attention must be paid both before performing an analysis, i .e.,
71when determining the similarity between datasets and their order—the
72dimension of the signal subspace—and while performing the analysis
73itself.
74In this paper, we define the similarity between two datasets as the
75number of common components that both datasets share, i .e., those
76components that are correlated across datasets, raising the issue of
77how to determine this number when the sample size is limited. One
78of the most popular exploratory techniques to estimate the number of
79common components between two datasets is based on the canonical
80correlation coefficients (CCCs) calculated using CCA (Hotelling, 1936)
81and defining a threshold for the level of the correlation, see e.g.,
82(Hoefs, 1983; Bush et al., 1986; Kennedy et al., 1990; Lin et al.,
832006). Other methods for estimating the number of common and dis-
84tinctive sources include: orthogonal n-way partial least squares
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85 (OnPLS) (Löfstedt & Trygg, 2011), generalized singular value decompo-
86 sition (Alter et al., 2003), and distinctive and common components
87 with simultaneous-component analysis (DISCO-SCA) (van Deun et al.,
88 2013). These methods all assume sufficient sample support and
89 thus perform poorly when the number of samples is not significantly
90 greater than the number of observations. CCA, in particular, suffers
91 greatly in the sample-poor regime, where all CCCs are significantly
92 misestimated (Song et al., 2015) and the highest CCCs, usually of
93 greatest interest, may saturate at 1 (Pezeshki et al., 2004), meaning
94 that they provide no information about the true relationship between
95 the datasets.
96 Sincemultimodal data is often quite noisy and of high dimension-
97 ality, dimension reduction using principal component analysis (PCA)
98 is a crucial preprocessing step for avoiding the problem of over-
99 fitting in subsequent analyses. However, the effectiveness of PCA is
100 intimately tied to the problem of order selection. For a single dataset,
101 the most popular order selection methods define the order based on
102 information theoretic criteria (ITC) (Wax & Kailath, 1985), i.e., by
103 using a function of the estimated eigenvalues of the data and the
104 number of model parameters. These methods include: Akaike's in-
105 formation criterion (AIC) (Akaike, 1973), minimum description
106 length (MDL) (Rissanen, 1978) or Bayesian information criterion
107 (BIC) (Schwarz, 1978), and extensions of those methods, see e.g.,
108 (Li et al., 2011). Though these methods have found widespread ap-
109 plication in multimodal fusion, they are not directly applicable for
110 two major reasons. The first is that almost all of these eigenvalue-
111 based methods, with the notable exception of (Nadakuditi &
112 Edelman, 2008), assume sufficient sample support. If this is not
113 true, such as for multimodal fusion using CCA, where the number
114 of subjects is much less than the dimension of the data, the perfor-
115 mance of these methods deteriorates rapidly because the eigen-
116 values cannot be estimated accurately (Nadakuditi & Edelman,
117 2008). Additionally, these methods only report on the sources that
118 have greatest energy in each dataset individually. Since we are inter-
119 ested in common components that are linked across datasets, the use
120 of methods that focus solely on a single dataset is not a desirable so-
121 lution to the question of order selection for multimodal fusion. This
122 provides the incentive to consider the problems of determining the
123 degree of similarity and order jointly. Though not used in the context
124 of medical imaging, there are methods that consider these two prob-
125 lems jointly, see e .g., (Zwick & Velicer, 1986; Hwang et al., 2013),
126 however these techniques are heuristic and will fail in the sample-
127 poor regime (Roseveare & Schreier, 2015).
128 In this paper, we discuss an effective method, PCA and CCA (PCA-
129 CCA) along with the order selection rule from (Song et al., 2015), for
130 jointly determining the number of common sources for datasets and
131 their order, in the sample-poor regime and demonstrate its impor-
132 tance as a preliminary step for multimodal fusion. To the best of
133 our knowledge, this method is the only one that addresses the issues
134 of common source detection and order selection for the sample-poor
135 case encountered when using CCA for multimodal fusion. The versa-
136 tility and high performance of this technique are first demonstrated
137 through simulations. We then apply this newmethod to the pairwise
138 combinations of functional magnetic resonance imaging (fMRI),
139 structural magnetic resonance imaging (sMRI), and electroencepha-
140 logram (EEG) data drawn from 14 patients with schizophrenia and
141 22 healthy controls performing an auditory oddball (AOD) task and
142 relate these results to the pairwise fusion results obtained using
143 CCA. Through this application, we demonstrate a strong correlation
144 between the number of common components estimated using PCA-
145 CCA, i .e., the similarity between datasets, and number of statistically
146 significant components estimated during the fusion analysis. This
147 technique of investigating the pairwise combinations of datasets
148 drawn from the same subjects provides unique insight into the de-
149 gree of complementarity between related data of different
150 modalities.

1512. Materials and methods

1522.1. Theory

1532.1.1. Traditional and sample-poor hypothesis test
154Let us assume that we have M independent and identically dis-
155tributed (i.i.d.) paired samples of x½1�∈Rn and x½2�∈Rm from the two-
156channel measurement model (Song et al., 2015),

x 1½ � ¼ A 1½ �s 1½ � þ n 1½ �
158158

159

x 2½ � ¼ A 2½ �s 2½ � þ n 2½ �; ð1Þ

161161where s½k�∈Rdþ f ; k ¼ 1;2, are zero-mean jointly Gaussian random
vectors with cross-covariance matrix, Rs1s2=E{s[1](s[2])T}, given by

Rs1s2 ¼
diag ρ1σ

1½ �
1 σ 2½ �

1 ;…;ρdσ
1½ �
d σ 2½ �

d

� �
0d� f

0 f�d 0 f� f

" #
;

163163where σi
[k] is the unknown standard deviation of signal component

si
[k] and ρi is the correlation coefficient between si

[1] and si
[2].

164Thus, both s[1] and s[2] have d correlated signals and f uncorrelated
165signals. Without loss of generality, we assume the auto-covariance
166matrices of s[1] and s[2] to be diagonal. The noise terms n[1] and n[2]

167are independent of each other, independent of the signals,
168and zero-mean Gaussian with unknown covariance matrices. Addi-
169tionally, without loss of generality we assume that A[1] and A[2] are
170of full column rank and, like the dimensions d and f, are fixed but
171unknown.
172We collect theM sample pairs into data matrices X[1]=[x1[1],… ,xM[1]]
173and X[2]=[x1[2],… ,xM[2]]. When performing CCA whenMbm+n, at least
174m+n-M of the sample canonical correlation coefficients, ki; i ¼ 1;…; q,
175q=min(m,n), will be identically 1 regardless of the values of ρi and
176thus do not provide any information about the relationship between
177s[1] and s[2] (Pezeshki et al., 2004). Moreover, even in the case where
178M is greater, but not significantly greater, thanm+n, the sample canon-
179ical correlations may significantly overestimate the population canoni-
180cal correlations (Song et al., 2015). This result provides the incentive
181to estimate a suitable rank, r, in order to reduce the dimensions of X[1]

182and X[2], thus allowing accurate estimation of the number of correlated
183signals.
184A classical way of estimating d is by assuming that the sources are
185drawn from a multivariate Gaussian distribution and applying a se-
186quence of binary hypothesis tests (Bartlett, 1941; Lawley, 1959). The
187test begins with s=0 and compares the two hypotheses H0:d=s and
188H1 :dNs. If the null hypothesis is rejected, then s is increased by one
189and the test is repeated, until either the null hypothesis is not rejected
190or s=q. This test is based on the Bartlett–Lawley statistic (Bartlett,
1911941; Lawley, 1959), which is given by

C sð Þ ¼ M � s�mþ nþ 1
2

þ∑
s

i¼1
k�2
i

� �
ln ∏

q

i¼sþ1
1� k2i

� �
; ð2Þ

193193and is asymptotically distributed under H0 as χ2 with (m-s)(n-s) de-
grees of freedom. The fact that the test statistic is distributed according

194to the χ2 distribution enables the determination of a threshold, T(s), to
195meet a given probability of false alarm, PFA, for the test. A major con-
196straint of the traditional framework is the assumption of sufficient sam-
197ples, i .e., that theki's are accurate estimates of the true ki's, making it not
198applicable for the sample-poor regime.
199As proposed in (Song et al., 2015), the sample-poor version of the
200classical hypothesis test selects

d ¼ max
r∈R

min
s∈S

s : C s; rð ÞbT s; rð Þf g; ð3Þ
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