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methods for calculating the order of multimodal data focus only on sources with the greatest individual energy

and ignore relations across datasets. Additionally, these techniques as well as the most widely-used methods
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for determining the degree of similarity between datasets assume sufficient sample support and are not effective
in the sample-poor regime. In this paper, we propose to jointly estimate the degree of similarity between datasets
and their order when few samples are present using principal component analysis and canonical correlation
analysis (PCA-CCA). By considering these two problems simultaneously, we are able to minimize the assump-
tions placed on the data and achieve superior performance in the sample-poor regime compared to traditional
techniques. We apply PCA-CCA to the pairwise combinations of functional magnetic resonance imaging
(fMRI), structural magnetic resonance imaging (sMRI), and electroencephalogram (EEG) data drawn from pa-

tients with schizophrenia and healthy controls while performing an auditory oddball task. The PCA-CCA results
indicate that the fMRI and sMRI datasets are the most similar, whereas the SMRI and EEG datasets share the 33
least similarity. We also demonstrate that the degree of similarity obtained by PCA-CCA is highly predictive of 34
the degree of significance found for components generated using CCA.

© 2016 Published by Elsevier Inc.

1. Introduction

The collection of data from multiple modalities has become common
in neurological studies, since different modalities are expected to pro-
vide complementary views of complicated systems, such as the study
of brain activity (James & Dasarathy, 2014). Thus, full utilization of all
common information forms the fundamental goal of performing a
joint analysis on multimodal data. Since little is known about the
intermodality relationships, it is important to minimize the underlying
assumptions placed on the data and let the data “speak for itself.” Be-
cause of this fact and their ability to treat separate modalities in a sym-
metric manner, multivariate data-driven methods have proven to be
quite popular for the fusion of multimodal neurological data, see e.g.,
(James & Dasarathy, 2014; Calhoun & Adal, 2009; Adal et al., 2015). To
this end, canonical correlation analysis (CCA), which maximizes the cor-
relation of sources across datasets (Hotelling, 1936), has proven to be an
effective multivariate and data-driven fusion method, see e.g., (Adal
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etal, 2015; Correa et al., 2008; Sui et al., 2010; Chen et al,, 2014). How-
ever, if the covariances are unknown and must be estimated from the
samples, then CCA requires sufficient sample support (Pezeshki et al.,
2004). This is particularly an issue when performing multimodal data
fusion, since the number of samples, i.e. subjects, is typically much
less than the dimension of the neurological data that is used. Thus, spe-
cial attention must be paid both before performing an analysis, i.e.,
when determining the similarity between datasets and their order—the
dimension of the signal subspace—and while performing the analysis
itself.

In this paper, we define the similarity between two datasets as the
number of common components that both datasets share, i.e., those
components that are correlated across datasets, raising the issue of
how to determine this number when the sample size is limited. One
of the most popular exploratory techniques to estimate the number of
common components between two datasets is based on the canonical
correlation coefficients (CCCs) calculated using CCA (Hotelling, 1936)
and defining a threshold for the level of the correlation, see e.g.,
(Hoefs, 1983; Bush et al., 1986; Kennedy et al., 1990; Lin et al.,
2006). Other methods for estimating the number of common and dis-
tinctive sources include: orthogonal n-way partial least squares
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(OnPLS) (Lofstedt & Trygg, 2011), generalized singular value decompo-
sition (Alter et al., 2003), and distinctive and common components
with simultaneous-component analysis (DISCO-SCA) (van Deun et al.,
2013). These methods all assume sufficient sample support and
thus perform poorly when the number of samples is not significantly
greater than the number of observations. CCA, in particular, suffers
greatly in the sample-poor regime, where all CCCs are significantly
misestimated (Song et al., 2015) and the highest CCCs, usually of
greatest interest, may saturate at 1 (Pezeshki et al., 2004), meaning
that they provide no information about the true relationship between
the datasets.

Since multimodal data is often quite noisy and of high dimension-
ality, dimension reduction using principal component analysis (PCA)
is a crucial preprocessing step for avoiding the problem of over-
fitting in subsequent analyses. However, the effectiveness of PCA is
intimately tied to the problem of order selection. For a single dataset,
the most popular order selection methods define the order based on
information theoretic criteria (ITC) (Wax & Kailath, 1985), i.e., by
using a function of the estimated eigenvalues of the data and the
number of model parameters. These methods include: Akaike's in-
formation criterion (AIC) (Akaike, 1973), minimum description
length (MDL) (Rissanen, 1978) or Bayesian information criterion
(BIC) (Schwarz, 1978), and extensions of those methods, see e.g.,
(Lietal., 2011). Though these methods have found widespread ap-
plication in multimodal fusion, they are not directly applicable for
two major reasons. The first is that almost all of these eigenvalue-
based methods, with the notable exception of (Nadakuditi &
Edelman, 2008), assume sufficient sample support. If this is not
true, such as for multimodal fusion using CCA, where the number
of subjects is much less than the dimension of the data, the perfor-
mance of these methods deteriorates rapidly because the eigen-
values cannot be estimated accurately (Nadakuditi & Edelman,
2008). Additionally, these methods only report on the sources that
have greatest energy in each dataset individually. Since we are inter-
ested in common components that are linked across datasets, the use
of methods that focus solely on a single dataset is not a desirable so-
lution to the question of order selection for multimodal fusion. This
provides the incentive to consider the problems of determining the
degree of similarity and order jointly. Though not used in the context
of medical imaging, there are methods that consider these two prob-
lems jointly, see e.g., (Zwick & Velicer, 1986; Hwang et al., 2013),
however these techniques are heuristic and will fail in the sample-
poor regime (Roseveare & Schreier, 2015).

In this paper, we discuss an effective method, PCA and CCA (PCA-
CCA) along with the order selection rule from (Song et al., 2015), for
jointly determining the number of common sources for datasets and
their order, in the sample-poor regime and demonstrate its impor-
tance as a preliminary step for multimodal fusion. To the best of
our knowledge, this method is the only one that addresses the issues
of common source detection and order selection for the sample-poor
case encountered when using CCA for multimodal fusion. The versa-
tility and high performance of this technique are first demonstrated
through simulations. We then apply this new method to the pairwise
combinations of functional magnetic resonance imaging (fMRI),
structural magnetic resonance imaging (sMRI), and electroencepha-
logram (EEG) data drawn from 14 patients with schizophrenia and
22 healthy controls performing an auditory oddball (AOD) task and
relate these results to the pairwise fusion results obtained using
CCA. Through this application, we demonstrate a strong correlation
between the number of common components estimated using PCA-
CCA, i.e., the similarity between datasets, and number of statistically
significant components estimated during the fusion analysis. This
technique of investigating the pairwise combinations of datasets
drawn from the same subjects provides unique insight into the de-
gree of complementarity between related data of different
modalities.

2. Materials and methods
2.1. Theory

2.1.1. Traditional and sample-poor hypothesis test

Let us assume that we have M independent and identically dis-
tributed (i.i.d.) paired samples of x[VER" and X €R™ from the two-
channel measurement model (Song et al., 2015),

X1l — Alllgl 4 1]
X2 = APIsl | 2] 1)

where sKeR®f k =1,2, are zero-mean jointly Gaussian random
vectors with cross-covariance matrix, Ry s, = E{s!"!(s?)T}, given by

. 1 2 1 2
Reo — {dlag(pla[l](7[1]7...,pd(7,[j]o[d]) def}
515, = 5
fxd Ofsr

where of¥! is the unknown standard deviation of signal component
st and p; is the correlation coefficient between s!!! and s/?l.
Thus, both s!'! and s/?! have d correlated signals and f uncorrelated
signals. Without loss of generality, we assume the auto-covariance
matrices of s{' and s'?! to be diagonal. The noise terms n''! and n?!
are independent of each other, independent of the signals,
and zero-mean Gaussian with unknown covariance matrices. Addi-
tionally, without loss of generality we assume that A"l and A™! are
of full column rank and, like the dimensions d and f, are fixed but
unknown.

We collect the M sample pairs into data matrices X' =[x}, ..., x}}1]
and XP' =[x, ... x}71]. When performing CCA when M<m + n, at least
m+ n-M of the sample canonical correlation coefficients, k;,i = 1, ..., q,
q= min (m,n), will be identically 1 regardless of the values of p; and
thus do not provide any information about the relationship between
st and s!?! (Pezeshki et al., 2004). Moreover, even in the case where
M is greater, but not significantly greater, than m + n, the sample canon-
ical correlations may significantly overestimate the population canoni-
cal correlations (Song et al., 2015). This result provides the incentive
to estimate a suitable rank, r, in order to reduce the dimensions of X!"!
and X2, thus allowing accurate estimation of the number of correlated
signals.

A classical way of estimating d is by assuming that the sources are
drawn from a multivariate Gaussian distribution and applying a se-
quence of binary hypothesis tests (Bartlett, 1941; Lawley, 1959). The
test begins with s =0 and compares the two hypotheses Hy:d =s and
H, :d>s. If the null hypothesis is rejected, then s is increased by one
and the test is repeated, until either the null hypothesis is not rejected
or s=gq. This test is based on the Bartlett-Lawley statistic (Bartlett,
1941; Lawley, 1959), which is given by

S q
Cls) = (M—s——m+"+l+2 k,-’2> In ]
i=1

2

2 i=s+1 (] K )7 @)
and is asymptotically distributed under Ho as y? with (m-s)(n-s) de-
grees of freedom. The fact that the test statistic is distributed according
to the »? distribution enables the determination of a threshold, T(s), to
meet a given probability of false alarm, Pg,4, for the test. A major con-
straint of the traditional framework is the assumption of sufficient sam-
ples, i.e., that thek;'s are accurate estimates of the true k;'s, making it not
applicable for the sample-poor regime.

As proposed in (Song et al., 2015), the sample-poor version of the
classical hypothesis test selects

d= max rsrélsn{s 1 C(s,n)<T(s,1)}, (3)
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