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Longitudinal neuroimaging data plays an important role in mapping the neural developmental profile of major
neuropsychiatric and neurodegenerative disorders and normal brain. The development of such developmental
maps is critical for the prevention, diagnosis, and treatment of many brain-related diseases. The aim of this
paper is to develop a spatio-temporal Gaussian process (STGP) framework to accurately delineate the
developmental trajectories of brain structure and function, while achieving better prediction by explicitly incor-
porating the spatial and temporal features of longitudinal neuroimaging data. Our STGP integrates a functional
principal component model (FPCA) and a partition parametric space–time covariance model to capture the
medium-to-large and small-to-medium spatio-temporal dependence structures, respectively. We develop a
three-stage efficient estimation procedure as well as a predictive method based on a kriging technique. Two
key novelties of STGP are that it can efficiently use a small number of parameters to capture complex non-
stationary and non-separable spatio-temporal dependence structures and that it can accurately predict spatio-
temporal changes.We illustrate STGP using simulated data sets and two real data analyses including longitudinal
positron emission tomography data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and longitudi-
nal lateral ventricle surface data from a longitudinal study of early brain development.
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1. Introduction

Large-scale longitudinal neuroimaging studies have collected a rich
set of ultra-high dimensional imaging data, behavioral data, and clinical
data in order to better understand the progress of neuropsychiatric
disorders, neurological disorders and stroke, and normal brain develop-
ment, among many others (Evans and Group., 2006; Almli et al., 2007;

Skup et al., 2011; Meltzer et al., 2009; Kim et al., 2010; Weiner et al.,
2013). Three primary goals of longitudinal neuroimaging studies are

• (i) to characterize individual change in brain structure and function
over time;

• (ii) to characterize the effect of some covariates of interest, such as
diagnostic status and gender, on the individual change; and

• (iii) to study the predictive value of early brain developmental trajec-
tories for later brain and cognitive development and disease
progression.

Moreover, the objective 2 of the recent National Institute of Mental
Health (NIMH) Strategic Plan is to chart mental illness trajectories to
determine when, where, and how to intervene by using novel
techniques (e.g., imaging). To achieve these goals (i)–(iii), it requires
the development of advanced image processing and statistical tools.

A distinctive feature of longitudinal neuroimaging data is that it con-
tains both spatial and temporal dimensions. Specifically, imaging mea-
surements of the same individual usually exhibit positive correlation
and the strength of the correlation decreases with the time separation.
Moreover, due to the inherent biological structure and function of
brain, neuroimaging data are spatially correlated in nature and contain
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spatially contiguous regions. However, since longitudinal neuroimaging
data usually has strong heterogeneity in longitudinal trajectories across
space, their spatial and temporal dimensions are typically non-
separable. Such non-separability has posed unprecedented challenges
to most existing statistical methods for achieving goals (i)–(iii). As
shown in Derado et al. (2010), appropriately accounting for correlation
structure in statistical modeling and estimation can lead to substantial
gains in statistical power. Furthermore, accurately modeling the spatial
and temporal dependencies is even more critical for prediction (Cressie
and Wikle, 2011; Derado et al., 2013; Demel and Du, 2015).

There are twomajor groups of spatio-temporalmodels for longitudi-
nal neuroimagingdata. Thefirst one is to use temporal evolutionmodels
for non-linear image registration to estimate longitudinal spatial
transformations that capture time-varying images (Ashburner and
Ridgway, 2012; Singh et al., 2015; Hong et al., 2012). Such temporal
evolution models are usually characterized by some regularizing term
and identified either by fitting parametric progression models on
geometric features of the transformation or by choosing an opportune
metric in the space of transformations to characterize specific evolution
models in the image space. These models usually cannot capture
complex spatial–temporal correlation of longitudinal neuroimaging
data. The second one, usually identified as voxel-based analysis, is to
fit some parametric or semi-parametric regression models (e.g., linear
mixed effects and estimating equations) at each voxel of registered
images (Bernal-Rusiel et al., 2013; Li et al., 2013; Yuan et al., 2013;
Guillaume et al., 2014; Skup et al., 2012). These models usually ignore
the moderate-to-long range spatial correlation of imaging data, even
though local spatial correlation is usually introduced by the use of
Gaussian smoothing with some apriori kernel size.

Recently, there is a growing interest in modeling complex
spatial–temporal correlation of longitudinal neuroimaging data
(Marco et al., 2015; Lorenzi et al., 2015; Derado et al., 2013; Guo
et al., 2008; Woolrich et al., 2004; Gössl et al., 2001; Brezger et al.,
2007; Penny et al., 2005). Such models are important for using
longitudinal neuroimaging to guide treatment selection for individu-
al patients and predict the progression of disease. For instance, in
Guo et al. (2008), a predictive statistical model for PET and fMRI
data was proposed to forecast a patient's brain activity following a
specified treatment regimen. In Derado et al. (2013), a Bayesian spa-
tial hierarchical model was proposed for predicting follow-up neural
activity based on an individual's baseline functional neuroimaging
data. In Marco et al. (2015) and Lorenzi et al. (2015), two novel
spatio-temporal generative models were proposed by using either
the Kronecker product of spatial and temporal covariance matrices
or the kernel convolutions of a white noise Gaussian process. In
general, borrowing strength from the spatial correlations as well as
capturing temporal correlations between brain activity can signifi-
cantly improve predictive performance.

The aim of this paper is to develop a spatio-temporal Gaussian
process (STGP) framework to efficiently and flexibly model the spatial
and temporal correlation structure of longitudinal neuroimaging data.
Compared with the existing literature (Marco et al., 2015; Lorenzi
et al., 2015; Derado et al., 2013; Guo et al., 2008; Woolrich et al., 2004;
Gössl et al., 2001; Brezger et al., 2007; Penny et al., 2005), we make
several novel contributions. (i) Our STGP uses a functional principal
component model (FPCA) to capture a large portion of spatio-
temporal dependence structure, while it uses a partition space–time co-
variance model to capture some local spatio-temporal correlations. In
particular, the basis functions for FPCA are directly learnt from data
and can capture some key features of longitudinal neuroimaging data,
which may not be easily modeled by using specific parametric models
(e.g., Markov random field). In contrast, most existing models either
assume some specific parametric models (e.g., autoregressive and
Markov random field) or use the kernel convolutions of a white noise
Gaussian process for a fixed kernel function. (ii) We develop a three-
stage efficient estimation procedure to estimate all parameters

associated with the spatio-temporal dependence structure. (iii) We
propose a prediction method that borrows strength from the spatial
and temporal correlations to achieve much better prediction of spatio-
temporal changes. (iv) We use two real data sets to illustrate that
STGP is a powerful tool for quantifying and/or predicting the spatio-
temporal changes of brain structure and function.

2. Methods

2.1. Model formulation

Consider a longitudinal neuroimaging study with n subjects. We
observe neuroimaging measures (e.g., cortical thickness), denoted by
{yi(d, tij)}, at voxeld of a three-dimensional (3D) volume (or 2D surface),
denoted by D, and a p×1 vector of covariates (e.g., age, gender, and
diagnostic status), denoted by xi(tij)=(xi ,1(tij),… ,xi ,p(tij))T, for the i-
th subject at time tij∈T for i=1,… ,n and j=1,… ,mi, where mi

denotes the total number of time points for the i-th subject. Without
loss of generality, D and T are assumed to be compact sets in ℝ3 and
ℝ, respectively, and ND denotes the number of voxels in D.

The measurement model of our spatio-temporal Gaussian process
(STGP) is given by.

yi d; tð Þ ¼ μ d; xi tð Þð Þ þ ηi d; tð Þ þ ϵi d; tð Þ for i ¼ 1;…;n; ð1Þ

where μ(d,xi(t)) is the mean structure for characterizing the effects
of covariates xi(t)=(xi , 1(t), … ,xi ,p(t))T on longitudinal neuroimag-
ing data across (d, t). The ηi(d, t) are random functions that charac-
terize both individual image variations from μ(d,xi(t)) and the
medium-to-long-range dependence of longitudinal imaging data.
Moreover, ϵi(d, t) are measurement errors that capture the local
spatio-temporal dependence structure of longitudinal imaging
data. It is assumed that ηi(d, t) and ϵi(d, t) are mutually independent
and ηi(d, t) and ϵi(d, t) are, respectively, independent and identical
copies of GP(0 ,Ση) and GP(0 ,Σϵ), where GP(μ ,Σ) denotes a Gaussian
process with mean function μ(d, t) and covariance function
Σ((d, t), (d′, t′)).

We consider a functional principal component analysis (FPCA)
model for the process ηi(d, t) or a spectral decomposition of
Ση((d, t), (d′, t′)). Let λ1≥λ2≥… ≥0 be the ordered eigenvalues of the
linear operator determined by Ση with ∑∞

l¼1λlb∞ and the ψl(d, t)'s be
the corresponding orthonormal eigenfunctions (Yao and Lee, 2006;
Hall et al., 2006; Chiou et al., 2004). Then the spectral decomposition
of Ση((d,t),(d′, t′)) is given by

X
η

d; tð Þ; d0; t0
� �� �

¼
X∞
l¼1

λlψl d; tð Þψl d
0
; t0

� �
: ð2Þ

Then ηi(d,t) admits the Karhunen–Loeve expansion as follows:

ηi d; tð Þ ¼
X∞
l¼1

ξi;lψl d; tð Þ; ð3Þ

where ξi;l ¼ ∫T ∫d∈Dηiðd; tÞψlðd; tÞdVðdÞdt is referred to as the l-th
functional principal component score of the i-th subject, in which dVðsÞ
denotes the Lebesgue measure. The ξi ,l's are uncorrelated random vari-
ables with E(ξi , l)=0 and E(ξi , l2 )=λl. If λl≈0 for l≥L0+1, then Eq. (3)
can be approximated by

ηi d; tð Þ≈
XL0
l¼1

ξi;lψl d; tð Þ: ð4Þ

Compared with Lorenzi et al. (2015), a key advantage of using FPCA
is that ψl(d,t) are directly estimated from the data.
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