
Multivariate statistical analysis of diffusion imaging parameters using
partial least squares: Application to white matter variations in
Alzheimer's disease

Ender Konukoglu a,⁎, Jean-Philippe Coutu a,b, David H. Salat a,c,d, Bruce Fischl a,e,
the Alzheimer's Disease Neuroimaging Initiative (ADNI) 1:
a MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
b Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
c Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
d Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA
e Computer Science and Artificial Intelligence Laboratory, MIT, USA

a b s t r a c ta r t i c l e i n f o

Article history:
Received 13 November 2015
Revised 26 March 2016
Accepted 15 April 2016
Available online 19 April 2016

Diffusion magnetic resonance imaging (dMRI) is a unique technology that allows the noninvasive quantification
of microstructural tissue properties of the human brain in healthy subjects as well as the probing of disease-
induced variations. Population studies of dMRI data have been essential in identifying pathological structural
changes in various conditions, such as Alzheimer's and Huntington's diseases (Salat et al., 2010; Rosas et al.,
2006). The most common form of dMRI involves fitting a tensor to the underlying imaging data (known as dif-
fusion tensor imaging, or DTI), then deriving parametric maps, each quantifying a different aspect of the under-
lying microstructure, e.g. fractional anisotropy and mean diffusivity. To date, the statistical methods utilized in
most DTI population studies either analyzed only one such map or analyzed several of them, each in isolation.
However, it ismost likely that variations in themicrostructure due topathology or normal variabilitywould affect
several parameters simultaneously, with differing variations modulating the various parameters to differing de-
grees. Therefore, joint analysis of the available diffusion maps can be more powerful in characterizing histopa-
thology and distinguishing between conditions than the widely used univariate analysis. In this article, we
propose amultivariate approach for statistical analysis of diffusion parameters that uses partial least squares cor-
relation (PLSC) analysis and permutation testing as building blocks in a voxel-wise fashion. Stemming from the
common formulation, we present three different multivariate procedures for group analysis, regressing-out nui-
sance parameters and comparing effects of different conditions. We used the proposed procedures to study the
effects of non-demented aging, Alzheimer's disease and mild cognitive impairment on the white matter. Here,
we present results demonstrating that the proposed PLSC-based approach can differentiate between effects of
different conditions in the same region as well as uncover spatial variations of effects across the white matter.
The proposed procedures were able to answer questions on structural variations such as: “are there regions in
the white matter where Alzheimer's disease has a different effect than aging or similar effect as aging?” and
“are there regions in the white matter that are affected by both mild cognitive impairment and Alzheimer's
disease but with differing multivariate effects?”
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1. Introduction

Diffusion-weighted magnetic resonance imaging (dMRI) has been
used in a wide range of studies to understand basic tissue properties
in healthy individuals as well as developmental and degenerative
changes that occur across the lifespan (e.g. Pfefferbaum et al., 2000;
Salat et al., 2005). Through modeling water diffusivity in tissue micro-
structure, several different voxel-wise parametermaps can be extracted
from dMRI data, which have been shown to be sensitive measures for
identifying structural variations across individuals and tissue changes
resulting from disease (Salat et al., 2010; Rosas et al., 2006; Bozzali
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et al., 2002; Rose et al., 2000). To date, the great majority of research
studying dMRI-based maps have used the diffusion tensor imaging
(DTI) model and either focused on a single parameter of interest (e.g.
typically the fractional anisotropy (FA) or the mean diffusivity (MD)),
or analyzed multiple parameters using univariate methods (Salat
et al., 2010; Bozzali et al., 2002; Rose et al., 2000; Amlien and Fjell,
2014; Sachdev et al., 2013; Villain et al., 2008; Lu et al., 2014;
Bartzokis et al., 2004; Damoiseaux et al., 2009; Takahashi et al., 2002;
Douaud et al., 2011). Animal and postmortem studies have loosely
linked these different diffusion markers to histological properties and/
or specific pathologies, for example, ischemia, cell death and edema
have been linked to mean diffusivity (Chenevert et al., 2000; Sotak,
2002),myelinatedfiber organization anddispersion to fractional anisot-
ropy (Beaulieu, 2002; Moseley, 2002), and axonal injury (Song et al.,
2003) and demyelination (Song et al., 2005; Song et al., 2002;
Klawiter et al., 2011) to axial and radial diffusivity respectively. These
studies were critical in providing fundamental evidence that the multi-
ple contrasts obtained through diffusion modeling could be used in the
differentiation of dynamic processes in brain tissue such as tissue de-
generation across different conditions.

One detail that has been frequently neglected in previous research is
that different diffusion parameters at the same location quantify differ-
ent aspects of the same underlying tissue structure. Consequently, a
complex phenomenon that alters tissue structure, such as aging or
Alzheimer's disease, often affects all the parameters. The proportions
of the effects across parameters naturally might differ depending on
the type of alteration and the relationships between the parameters ex-
tracted from dMRI data. Therefore, it is plausible that differing histopa-
thology may result in different proportional changes to the various
dMRI-derived parameters. Joint analysis of the diffusion parameters
with a multivariate method may be able to detect such differences,
and disentangle similar appearing effects to better characterize condi-
tions, reveal complex spatial variations and yield higher power to differ-
entiate between conditions.

Coutu et al. in (Coutu et al., 2014) recently focused on the utility of a
multivariate approach across several diffusion parameters for examin-
ing tissue changes associated with aging. In their study, the authors fo-
cused on spatial variations in the effects of aging on the white matter.
They used seven diffusion parameters available through a diffusion
kurtosis-imagingmodel and identified three distinct classes of aging ef-
fects across the white matter. This initial result suggests that joint anal-
ysis of diffusion parameters with a multivariate approach may indeed
provide important information about disease processes not available
through examination of any parameter in isolation. Themultivariate ap-
proach Coutu et al. took was to compute the Pearson's correlation coef-
ficient between each diffusion parameter and subjects' age at each
location in the white matter, and for each point separately define the
set of coefficients as the “diffusion footprint”, a voxel-wise multivariate
representation. In this work, motivated by the results in (Coutu et al.,
2014),we focus on the joint analysis of diffusion parameters and extend
Coutu et al.’s initial method.

We introduce a novel approach for multivariate statistical analysis of
diffusion parameters. Our approach is a new interpretation of the diffu-
sion footprint through partial least squares correlation (PLSC) (Abdi and
Williams, 2013) analysis. This interpretation combined with non-
parametric permutation testing (Good, 2005), yields a powerful method-
ological basis with which a new set of hypotheses regarding changes in
tissue microstructure can be tested. We first present the PLSC-based
group analysis of diffusion parameters and the associated statistical test.
Then we define procedures for regressing out variables and comparing
conditions in themultivariate setting. These procedures allow comparing
conditions based on the type of effect they have on the diffusion parame-
ters, i.e. relative proportions of effects on parameters, in addition to effect-
size and location. The technical novelties introduced in this article are in
the way PLSC is applied on the diffusion data and the two procedures
that are defined using the PLSC interpretation of diffusion footprint.

We apply the proposed procedures to examine group differences
in diffusion parameters in the white matter among non-demented
elderly adults (CN), individuals with mild cognitive impairment
(MCI) and individuals with Alzheimer's disease (AD). We provide
three different experiments to demonstrate the use of the proposed
procedures. In the first set, we use our approach for detecting and vi-
sualizing spatial variations in the effects of aging, AD and MCI. These
maps provide a more refined visualization of the spatial variation of
condition effects compared to thework of Coutu et al. in (Coutu et al.,
2014). In the second experiment, we apply the proposed procedures
to identify areas where AD's effects are structurally different than the
cross-sectional effects of aging in a cognitively healthy population, as
quantified through diffusion parameters. Lastly, we examine wheth-
er MCI and AD have different multivariate diffusion profiles suggest-
ing possible differing histopathology (either in the pathological
process or in the stage of pathology) between these conditions. In
this work, we used the diffusion tensor-imaging model as a proof
of concept to demonstrate the benefits of the proposed multivariate
method given the availability of substantial data provided by the
Alzheimer's Disease Neuroimaging Initiative. However, the approach
is not specific to diffusion tensor imaging and is applicable to any
dMRI model and any set of parameters extracted from such models.
More broadly the method can also be extended to any multi-
parametric spatial dataset.

2. Methods

2.1. Diffusion footprint

Coutu et al. defined their voxel-wise multivariate representation,
diffusion footprint, as the set of Pearson's correlation coefficients be-
tween different diffusion parameters and the condition of interest. The
underlying idea in using correlation coefficients was to “normalize” dif-
ferent parameters whose absolute values might not be comparable, e.g.
mean diffusivity and fractional anisotropy. The set of correlation coeffi-
cients captures both the absolute effect size in each parameter, i.e. the
value of each correlation coefficient, and how much the condition af-
fects each diffusion parameter relative to each other, i.e. the propor-
tions. Based on this representation one can construct multivariate
voxel-wise maps and differentiate between condition effects at differ-
ent voxels in the image, as the authors did for effect of aging (Coutu
et al., 2014).

In the next sectionwe introduce the interpretation that the diffusion
footprint is actually the result of a partial least squares correlation anal-
ysis performed on the set of diffusion parameters and the condition,
which will lead to various extensions in the type of statistical analysis
one can do in the multivariate setting. In this article we construct two
such extensions: regressing out variables and comparing effects of dif-
ferent conditions.

2.2. Multivariate group analysis through partial least squares

The proposed approach uses the principles of partial least squares
correlation analysis (PLSC) (Abdi and Williams, 2013; Tucker, 1958).
PLSC has been previously used in neuroimaging to jointly analyze
all the voxels in the brain simultaneously (McIntosh et al., 1996;
McIntosh and Lobaugh, 2004; Krishnan et al., 2011). Here we apply
the PLSC principles in a voxel-wise fashion to jointly analyze the differ-
ent diffusion parameters at each voxel independent from the others. In a
sense this voxel-wise multivariate work is a straightforward extension
of univariate analysis to multi-parametric data. For the sake of com-
pleteness we present the proposed approach starting from basics with-
out assuming any knowledge of PLSC.

Let us assume we have N subjects and for each subject there are d
diffusion parameter maps and a condition-related variable, which can
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