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It is important to characterize the temporal trajectories of disease-related biomarkers in order to monitor pro-
gression and identify potential points of intervention. These are especially important for neurodegenerative dis-
eases, as therapeutic intervention ismost likely to be effective in the preclinical disease stages prior to significant
neuronal damage. Neuroimaging allows for themeasurement of structural, functional, andmetabolic integrity of
the brain at the level of voxels, whose volumes are on the order of mm3. These voxelwisemeasurements provide
a rich collection of disease indicators. Longitudinal neuroimaging studies enable the analysis of changes in these
voxelwise measures. However, commonly used longitudinal analysis approaches, such as linear mixed effects
models, do not account for the fact that individuals enter a study at various disease stages and progress at differ-
ent rates, and generally consider each voxelwise measure independently. We propose a multivariate nonlinear
mixed effects model for estimating the trajectories of voxelwise neuroimaging biomarkers from longitudinal
data that accounts for such differences across individuals. The method involves the prediction of a progression
score for each visit based on a collective analysis of voxelwise biomarker data within an expectation–maximiza-
tion framework that efficiently handles large amounts of measurements and variable number of visits per indi-
vidual, and accounts for spatial correlations among voxels. This score allows individuals with similar
progressions to be aligned and analyzed together, which enables the construction of a trajectory of brain changes
as a function of an underlying progression or disease stage. We apply our method to studying cortical β-amyloid
deposition, a hallmark of preclinical Alzheimer's disease, as measured using positron emission tomography. Re-
sults on 104 individuals with a total of 300 visits suggest that precuneus is the earliest cortical region to accumu-
late amyloid, closely followed by the cingulate and frontal cortices, then by the lateral parietal cortex. The
extracted progression scores reveal a pattern similar to mean cortical distribution volume ratio (DVR), an
index of global brain amyloid levels. The proposed method can be applied to other types of longitudinal imaging
data, including metabolism, blood flow, tau, and structural imaging-derived measures, to extract individualized
summary scores indicating disease progression and to provide voxelwise trajectories that can be compared be-
tween brain regions.
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1. Introduction

It is important to characterize the temporal trajectories of disease-
related biomarkers in order to monitor progression and to identify po-
tential points of intervention. Such a characterization is especially im-
portant for neurodegenerative diseases, as therapeutic intervention is
most likely to be effective in the preclinical disease stages prior to signif-
icant neuronal damage. For example, in Alzheimer's disease, brain

changes evident in structural, functional, and metabolic imaging may
occur more than a decade before the onset of cognitive symptoms
(Bateman et al., 2012), with cortical amyloid-β (Aβ) accumulation
being one of the earliest changes (Jack et al., 2013; Sperling et al.,
2014a; Villemagne et al., 2013). Such brain changes can be measured
using neuroimaging techniques and can be tracked over time at the in-
dividual level via longitudinal studies.

Given the focus on preventing and delaying the onset of incurable
neurodegenerative diseases, the emphasis of clinical trials has shifted
to studying clinically normal individuals with positive biomarkers, for
example those exhibiting brain amyloid in the case of AD, in order to
identify early intervention opportunities in the preclinical stages of
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disease (Sperling et al., 2014b). It is important to determine the tempo-
ral trajectories of hypothesized biomarkers in the early disease stages in
order to better understand their associations with disease progression.
Current neuroimaging methods allow for the characterization of the
brain at the mm3 level, generating hundreds of thousands of measure-
ments that can be used as potential biomarkers of neurodegenerative
diseases. Understanding the temporal trajectories of these voxelwise
measurements can provide clues into disease mechanisms by identify-
ing the earliest and fastest changing brain regions.

Changes in voxelwise neuroimaging measurements over time are
commonly studied using linear mixed effects models (Bernal-Rusiel
et al., 2012, 2013; Ziegler et al., 2015). Univariate linear mixed effects
models use time or age to characterize changes in a single imagingmea-
sure. However, time or age may not be the appropriate metric for mea-
suring disease progression due to variability across individuals. While
covariates can be included in linear mixed effects models to account
for this variability, choosing the correct set of covariates is difficult and
covariates generally have a more complicated association with disease
progression than the assumed linear relationship of linearmixed effects
models. Instead, this variability can be accounted for by aligning individ-
uals in timebased on their longitudinal biomarker profileswithin amul-
tivariate framework. This is the premise of the Disease Progression
Score method, which has been applied to studying changes in cognitive
and biological markers related to Alzheimer's disease (Jedynak et al.,
2012, 2014; Bilgel et al., 2014). It is assumed that there is an underlying
progression score (PS) for each subject visit that is an affine transformof
the subject's age, and given this PS, it is possible to place biomarker
measurements across a group of subjects onto a common timeline.
The affine transformation of age removes across-subject variability in
baseline biomarker measures as well as in their rates of longitudinal
progression. Each biomarker is associated with a parametric trajectory
as a function of PS, whose parameters are estimated along with the PS
for each subject. This allows one to “stitch” data across subjects to obtain
temporal biomarker trajectories that fit an underlying model (Fig. 1).

Previous approaches have used certain cognitive measures, such as
ADAS-Cog (Caroli and Frisoni, 2010; Yang et al., 2011), MMSE (Doody
et al., 2010) or CDR-SB (Delor et al., 2013) as a surrogate for disease pro-
gression to delineate the trajectories of other AD-related cognitivemea-
surements. These methods operate with the assumption that disease
progression is reflected by a single cognitive measurement rather than
a profile ofmultiplemeasurements, and therefore are inherently limited
in their characterization of disease evolution. Younes et al. (2014) fitted

a piecewise linear model to longitudinal data assuming that each bio-
marker becomes abnormal a certain number of years before clinical di-
agnosis, and this duration was estimated for each biomarker to yield
longitudinal trajectories as a function of time to diagnosis. A quantile re-
gression approach was employed by Schmidt-Richberg et al. (2015) to
align a sample of cognitively normals and mild cognitively impaired
(MCI)with a sample ofMCI andAD, and then to estimate biomarker tra-
jectories. These approaches assume that all individuals are on a path to
disease and require knowledge of clinical diagnosis. Therefore, they are
not suitable for studying the earliest changes in individuals who have
not converted to a clinical diagnosis. Donohue et al. (2014) applied a
self-modeling regression model within a multivariate framework to
characterize the longitudinal trajectories of a set of cognitive, CSF, and
neuroimaging-based biomarkers. This approach allows for across-
subject variability only in the age of onset, not in progression speed.
Models incorporatingfixed effects aswell as individual-level randomef-
fects have been proposed to study ADAS-Cog (Ito et al., 2011; Schiratti
et al., 2015b) and regional cortical atrophy (Schiratti et al. 2015b), and
Schulam et al. (2015) used a splinemodel that incorporates longitudinal
clustering and modeling of individual-level effects to study trajectories
of sclerodermamarkers. Thesemixed effects models take into consider-
ation eachmeasure separately rather than using themwithin a unifying
framework. Others have used event-based probabilistic frameworks to
determine the ordering of changes in longitudinal biomarker measures
aswell as the appropriate thresholds for separating normal from abnor-
mal measures (Fonteijn et al., 2012; Young et al., 2014). These methods
characterize longitudinal biomarker trajectories in a discrete framework
rather than a continuous one. Schiratti et al. (2015a) proposed an exten-
sion to their earlier approach tomodelmultiplemeasures together. Bio-
marker trajectories are assumed to be identical except for a shift along
the disease timeline, and this assumption prevents hypothesis testing
regarding rate of change across biomarkers. Furthermore, biomarkers
are assumed to be conditionally independent given the subject-level
random effects, but this assumption is not realistic when biomarkers
are voxel-based neuroimaging measurements.

Here, we adapt the disease progression score principle to studying
longitudinal neuroimaging data by making substantial innovations to
the progression score model and parameter estimation procedure.
First, voxelwise imaging measures constitute the biomarkers in the
model, and are analyzed together in amultivariate framework. Studying
progression at the voxel level rather than using region of interest (ROI)-
based measures allows for the discovery of patterns that may not be

Fig. 1. Illustration of the biomarker alignment concept in the progression score model. The biomarkers we consider in this work are PET measures of cerebral amyloid across a total of
K≈30,000 voxels. Top: Progression score (PS) aligns longitudinal measures better than age, and allows for the estimation of a trajectory for each biomarker/voxel (in gray). Bottom:
Estimated biomarker trajectories can be compared on the common PS scale.
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