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Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) often suffers from large
muscle artifacts.Muscle artifacts canbe removedusing signal-space projection (SSP), but this canmake the visual
interpretation of the remaining EEG data difficult. We suggest to use an additional step after SSP that we call
source-informed reconstruction (SIR). SSP–SIR improves substantially the signal quality of artifactual TMS–EEG
data, causing minimal distortion in the neuronal signal components.
In the SSP–SIR approach, we first project out themuscle artifact using SSP. Utilizing an anatomicalmodel and the
remaining signal, we estimate an equivalent source distribution in the brain. Finally, wemap the obtained source
estimate onto the original signal space, again using anatomical information. This approach restores the neuronal
signals in the sensor space and interpolates EEG traces onto the completely rejected channels.
The introduced algorithm efficiently suppresses TMS-related muscle artifacts in EEG while retaining well the
neuronal EEG topographies and signals. With the presented method, we can remove muscle artifacts from
TMS–EEG data and recover the underlying brain responses without compromising the readability of the signals
of interest.

© 2016 Elsevier Inc. All rights reserved.
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Introduction

Transcranial magnetic stimulation (TMS) is a non-invasive method
to artificially activate the cortex by applying brief and strong magnetic
pulses to the brain (Barker et al., 1985). Navigation enables precise
targeting of the stimulation to desired cortical areas (e.g., Massimini
et al., 2005; Julkunen et al., 2009). By combining navigated TMSwith si-
multaneous electroencephalography (EEG) (Virtanen et al., 1999), we
can measure directly how the TMS-evoked activity spreads in the
brain. This makes TMS–EEG a useful method for studying effective con-
nectivity (Ilmoniemi et al., 1997; Komssi et al., 2002; Massimini et al.,
2005).

So far, TMS–EEG has mainly been used to study relatively medial
cortical areas that do not lie directly under cranial muscles (Nikulin
et al., 2003; Rosanova et al., 2009; Cona et al., 2011; Farzan et al.,
2013). In principle, TMS–EEG could be used to study excitability and
connectivity anywhere in the cortex, but this is often challenging be-
cause of the TMS-evoked muscle artifacts that are likely to occur when
lateral areas are stimulated (Mutanen et al., 2013; Rogasch et al.,

2013). Muscle artifacts often have 10 to 1000 times larger amplitudes
than neuronal components and can last tens of milliseconds after the
pulse (Mutanen et al., 2013). With some subjects, even the stimulation
of more medial areas, such as primary motor cortex (M1), may result in
severe muscle-artifact contamination (Mutanen et al., 2013). Therefore,
effective artifact-removal methods are needed to improve the usability
of TMS–EEG.

Independent component analysis (ICA) has been suggested to sepa-
rate TMS–EEG data to brain and muscle-artifact signal components
(Korhonen et al., 2011; Hernandez-Pavon et al., 2012; Rogasch et al.,
2014). However, when using ICA, we have tomake a strong assumption
that the TMS-evoked muscle and brain responses are statistically inde-
pendent. Another possible technique is the signal-space-projection
(SSP) approach (Mäki and Ilmoniemi, 2011; Hernandez-Pavon et al.,
2012; ter Braack et al., 2013). In SSP, we estimate the signal subspace
containing themuscle artifacts and form a linear operator that removes
most of the artifact from the measured signal. Mäki and Ilmoniemi
(2011) showed that SSP is capable of suppressing muscle-artifact com-
ponents in TMS–EEG signals. However, SSP tends to attenuate also other
signals in the sensors close to the origin of the artifact. This makes the
conventional interpretation of EEG waveforms and topographies diffi-
cult after applying SSP.

In this paper, we solve the SSP-related attenuation problem by using
the suppressed data (and the suppressed lead fields) to compute source
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estimates that can be used to reconstruct artifact-free versions of the
original neuronal EEG field patterns. We call this method source-
informed reconstruction (SIR).

With simulations and analysis of measured EEG data, we show that
the combined SSP–SIR is able to considerably suppress muscle artifacts
while preserving the underlying neural responses of interest. We argue
that the present algorithm provides a highly useful tool in analyzing ar-
tifactual TMS–EEG data.

Methods

In this section,we introduce the theoretical basis for the artifact sup-
pression and source-informed data reconstruction. We also describe
how we measured, simulated, and analyzed data to validate the
approach.

Theory

We assume a linear data model for the measured EEG:

S ¼ LXþ A þ N; ð1Þ

where S is the signal matrix whose entry Si , t contains the measured
value of channel i at time t, X is the source matrix whose entry Xj ,t de-
scribes the activity level of a source j at a time t, and L is the lead-field
matrix whose entry Li ,j determines the sensitivity of channel i to source
j. The elements Ai ,t and Ni ,t of matrices A and N describe muscle artifact
and noise contamination in Si ,t, respectively.

We can consider our EEG data lying in a multidimensional signal
space where the dimension equals the number of EEG channels. When
using SSP, we estimate two signal subspaces where the first is able to
explain most of the artifact variance, the second being its orthogonal
complement (Uusitalo and Ilmoniemi, 1997). We refer to the former
as artifact subspace and the latter as brain subspace, although the artifact
subspace is likely to contain a considerable amount of brain signal and
vice versa. Once we have estimated the subspaces, we can construct a
linear operator P that projects the data onto the brain subspace,
discarding all information in the artifact subspace. Assuming an ideal
operator, PA=0, we obtain from Eq. (1)

PS ¼ PLXþ PAþ PN ¼ PLXþ PN: ð2Þ

Eq. (2) has the same form as an equation describing an artifact-free
EEG measurement, where PS and PL are the new measurement and
lead-field matrices, respectively. By using the l2-minimum-norm esti-
mate (MNE) (Hämäläinen and Ilmoniemi, 1994), we obtain an estimate

X̂ for the source distribution:

X̂ ¼ PLð Þ†PS; ð3Þ

where (PL)† is the appropriately regularized pseudoinverse of PL.
Next, we correct the SSP-caused distortions in the signals of interest

with SIR; we calculate the signal matrix ~S in the original signal space

generated by source estimate X̂:

~S ¼ LX̂: ð4Þ

A similar approach has been previously used inmagnetocardiography
(Numminen et al., 1995; Burghoff et al., 2000) and in magnetoencepha-
lography (Uutela et al., 2001). Aside from being free from artifacts (exact-
ly true if PA=0), ~S also contains less noise than S. By regularizing Eq. (3)
we do notmap S onto the least significant lead-field directions thatmain-
ly explain noise N. This reduces the effect of noise on the source estimate

X̂, and thus, also on ~S.

All in all, we can write the whole artifact (and noise) removal pro-
cess with one equation:

~S ¼ L PLð Þ†PS; ð5Þ

where ~S is the reconstructed, artifact-free data. We refer to the proce-
dure described by Eq. (5) as SSP–SIR.

An essential question is of course how to find P. In this paper, we use
the approach suggested by Mäki and Ilmoniemi (2011), which is based
on the difference in the frequency spectra betweenmuscle artifacts and
neuronal EEG signals. Fig. 1 shows a time–frequency plot of an EEG
channelmeasuring both TMS-evoked neuronal activity and amuscle ar-
tifact. During the time when the artifact is present, the signal covers a
much broader band than at other times, implying that the high-
frequency parts are mostly due to the muscle activation and noise.
This is also supported by the findings of Rosanova et al. (2009), who
studied the frequency content of TMS-evoked EEG in various cortical lo-
cations. Furthermore, the general understanding is that EEG mainly re-
flects synchronous post-synaptic currents in neuronal populations
(Nunez and Silberstein, 2000; Baillet et al., 2001) and that this activity
is seen in EEG mainly below 100 Hz (Buzsáki and Draguhn, 2004).
Thus, by taking the data corresponding to the time interval when the
muscle artifact is present and filtering it with an appropriate high-
pass filter H that satisfies H(LX)≈0, we obtain from Eq. (1)

H Sð Þ≈H Að Þ þ H Nð Þ: ð6Þ

We assume that the low-frequency parts of the muscle artifact lie in
the same signal subspace with the high-frequency parts. Then, we can
estimate the artifact subspace by using the high-passed data. We first
write the high-passed signals in terms of the singular value decomposi-
tion (SVD):

H Sð Þ ¼ UΣVT
; ð7Þ

where Σ has the singular values in a descending order on its diagonal
and U and V have the left and right singular vectors as columns, respec-
tively. The column vectors ofU form an orthonormal basis for the signal
space. Because the first singular directions (the leftmost column vectors
of U) explain most of the variance of the high-passed data and the
power of the artifact is expected to dominate the noise during the first
few tens of milliseconds, we obtain a good approximation for the

Fig. 1. A time–frequency plot of a typical TMS-evoked EEG response in an artifact-
contaminated channel (subject 2, channel C1). We estimate the artifact subspace by
high-pass filtering the data from 100 Hz. The plot was made using EEGLAB toolbox
(Delorme and Makeig, 2004) with the Morlet-wavelet decomposition.
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