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Multiple sclerosis lesions influence the process of image analysis, leading to tissue segmentation problems and
biased morphometric estimates. Existing techniques try to reduce this bias by filling all lesions as normal-
appearing white matter on T1-weighted images, considering each time-point separately. However, due to lesion
segmentation errors and the presence of structures adjacent to the lesions, such as the ventricles and deep grey
matter nuclei, filling all lesions with white matter-like intensities introduces errors and artefacts. In this paper,
we present a novel lesion filling strategy inspired by in-painting techniques used in computer graphics applica-
tions for image completion. The proposed technique uses a five-dimensional (5D), patch-based (multi-modality
andmulti-time-point), Non-Local Means algorithm that fills lesionswith themost plausible texture.We demon-
strate that this strategy introduces less bias, fewer artefacts and spurious edges than the current, publicly avail-
able techniques. The proposed method is modality-agnostic and can be applied to multiple time-points
simultaneously. In addition, it preserves anatomical structures and signal-to-noise characteristics even when
the lesions are neighbouring grey matter or cerebrospinal fluid, and avoids excess of blurring or rasterisation
due to the choice of the segmentation plane, shape of the lesions, and their size and/or location.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

Multiple sclerosis (MS) is an immune-mediated demyelinating dis-
ease that affects both white matter (WM) and grey matter (GM). It is
characterised pathologically by areas of inflammation, demyelination,
axonal loss and gliosis scattered throughout the central nervous system.
These pathological processes affect several quantitative MRI indices,
and therefore can be indirectly measured with advanced imaging
methods. Among these, tissue volume and, in particular, brain/tissue-
specific atrophy, are very sensitive to subtle changes over a scale of a
few months, making in vivo MRI measurements of these indices very
appealing for studying the mechanisms of disease and for clinical tri-
als. White matter plaques are relatively easy to detect using conven-
tional MRI techniques, whereas grey matter lesions can be observed
using specialised sequences, such as double inversion recovery (DIR)

(Geurts et al., 2012) or phase sensitive inversion recovery (PSIR)
(Sethi et al., 2012). MS plaques appear as areas of low-signal intensi-
ty and high-signal intensity compared with normal-appearing white
matter (NAWM) on T1-weighted and T2-weighted sequences re-
spectively. On the other hand, active lesions exhibit hyper-intense
signals on gadolinium-enhanced scans (Lladó et al., 2012). Lesions
and atrophy are two interconnected aspects of the disease, linked
to different disease mechanisms, and both are extremely important
for MS studies.

From an image processing perspective, MS lesions influence tissue
segmentation, resulting in the misclassification of the GM and the
WM. It has been suggested that MS lesions may affect the estimation
of segmentation parameters, resulting in a shift of tissue boundaries
(Chard et al., 2010), thus influencing the subsequent morphometric
studies, including atrophy measurements. Thus, there is a clear need
to reduce the negative impact that MS lesions may have on image anal-
ysis in order to improve tissue segmentation and longitudinal registra-
tion, increasing sensitivity to subtle changes, reducing the time-
intervals and sample sizes needed for longitudinal studies and treat-
ment trials.
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Various techniques have been developed in recent years based on
the concept of in-painting T1-weighted MRI images: Sdika and
Pelletier (2008), Chard et al. (2010), Battaglini et al. (2012), Magon
et al. (2014), Valverde et al. (2014), and Guizard et al. (2015).

In short, the process of lesion in-painting is based on filling a WM le-
sion with synthetic estimates of WM-like image intensities. The process
of WM lesion in-painting is expected to reduce the overall algorithmic
bias. Sdika andPelletier (2008) presented threedifferent in-painting algo-
rithms. The first, denoted basic in-painting and inspired by Telea (2004),
consists of filling the lesion ROI in an inner-radial manner using
a Gaussian kernel average 3×3×3 of the neighbouring intensities. The
second, called localwhitematter in-painting (LWMI), uses apriori informa-
tion obtained from an image segmentation technique to iteratively fill the
border of the lesions using aGaussian kernel. Finally, the globalwhitemat-
ter in-painting (GWMI) method fills the MS lesions with the mean inten-
sity of the normalWMover thewhole brain, meaning that all lesions will
have the same intensity regardless of their neighbourhood.

Recently, Chard et al. (2010) developed the LEAP (LEsion Automated
Preprocessing) technique with the aim of filling lesions as normal WM,
reproducing the WM noise characteristics and avoiding operator inter-
vention. This method starts by skull stripping the brain and applying a
non-uniformity intensity correction algorithm. The normal tissue inten-
sity distribution is modelled numerically as the sum of four Gaussian
components representing GM, WM, CSF, and partial-volume voxels. Fi-
nally, the lesion ROI is filled with random samples from a Gaussian dis-
tribution with mean equal to the most probable WM intensity and a
standard deviation equal to the WM full-width half maximum noise
characteristics. This method is available at: http://www.nmrgroup.ion.
ucl.ac.uk/. Valverde et al. (2014) and Magon et al. (2014) have then in-
troduced variations to the LEAP method. Valverde et al. (2014) sug-
gested to fill the volume in a slice-wise manner, whilst Magon et al.
(2014) filled the lesions using the mean intensity of two voxel expand-
ed neighbouring over the normal-appearing WM.

Similarly, Battaglini et al. (2012) presented amethod based on replac-
ing the lesion voxel intensities with values that are randomly sampled
from an intensity distribution that is measured from the surrounding
WM and GM voxels. The surrounding normal-appearing tissue volume
is taken as the extra volume obtained by dilating the lesion ROI twice. Le-
sions are thenfilledwith samples taken from the neighbouring histogram
using a uniform random value passed through an interpolated version of
the empirical cumulative distribution function of the neighbouring histo-
gram. Both GM and WM voxels are included in the neighbouring histo-
gram in order to represent the surrounding tissue and allow the filled
lesions to best visually blend into its environment. This method is avail-
able as part of FSL (Jenkinson et al., 2012) at http://fsl.fmrib.ox.ac.uk.

Regardless of their approach, all these algorithms have been restricted
to images of a specificMRImodality (e.g. T1-weighted scans), and require
accurate lesion segmentation, especially when lesions are periventricular
orwhen themethods are based on filling the lesionswith values from the
surrounding areas. They can also create shape gradients around the lesion
ROIs, and are prone to errors coming from estimating WM distribution
properties.

More recently, Guizard et al. (2013, 2015) calculated the most simi-
lar patches using only the surrounding regions after pre-filling the le-
sions with the median of the image intensities of the surrounding of
healthy tissues (Guizard et al., 2013). The same authors later introduced
an hierarchical, concentric filling strategy, where distances between
patches are computed over the full patch, the filling process is repeated
with different weighting values and at multiple increasing resolutions
(Guizard et al., 2015).

In the field of computer graphics, structurally aware in-painting al-
gorithms used for scratch/object/text removal and photo restoration
are common,withmany of these algorithms permitting a user to simply
erase an unwanted portion of an image without any prior knowledge
about its composition. These techniques attempt to fill regions by syn-
thesising plausible texture matches from the remainder of the image

(Criminisi et al., 2003; Komodakis and Tziritas, 2007; Barnes et al.,
2010). In doing so these algorithms are completely agnostic to the struc-
ture of the input image.

The most successful techniques for in-painting in computer
graphics, here denoted as exemplar-based methods, attempt to fill the
unknown ROI by simply copying content from the observed part of
the images (Komodakis and Tziritas, 2007), under some constraints.
This class of methods commonly divides the image into a large number
of sub-images, or patches, followed by either a patch-search method
Criminisi et al. (2003), or the use of the Non-Local Means algorithm
(Buades et al., 2005). Finally, the intensities can be synthesised using ei-
ther pixel values or patch-based textures from the most similar patch.

In this work, we formulate a multi-time-point, task-specific, patch-
search algorithm for the purpose of filling MS lesions. This novel work
offers three main advantages: first, due to its general formulation, the
proposed algorithm should in theory be able to inpaint most types of
MR images with repetitive patterns. Secondly, due to its contextual na-
ture, the proposed algorithm is also more robust to over-segmentation
of the lesion ROIs, thus reducing accuracy requirements whenmanually
or automatically defining the in-painting region of interest. Thirdly, and
finally, it allowsfilling lesions at different time-points (as in longitudinal
studies) at once taking advantage of the information of the lesion
evolution.

Material and methods

The proposed lesion filling technique can be described in threemain
steps: (1) determining the patch with the most similar neighbourhood
structure, (2) synthesising the intensity pattern from the best patch,
followed by (3) a buffing step through the application of a minimal
kernel-based convolution over the filled region.

First, we assume thatwe have a greyscale-valued 5Dvolume I⁎, com-
posed of n different modalities or MRI sequences, over t time points,
with each individual 3D volume being of size X×Y×Z. Each time point
and modality has an associated lesion mask, here denoted as L.

Let the filled image I be defined as I(p)= I⁎(p) ∀p∉L, and as IðpÞ¼
FðpÞ∀p ∈L , where p denotes the voxel location (x,y,z,n,t) in the image I
and FðpÞ is the function that synthesises the intensity of voxel p. We de-
fineΩ as a search region of sizeW3 voxels around voxel p (whereW de-
notes the spatial search region size in voxels in each spatial direction).
Within the regionΩ, we define a 5D target patch T(p) of size ntw3 voxels
(where w denotes the patch size in voxels), centred at a voxel p, and a
search patch S(q) of size ntw3 voxels, centred in q, with q∈Ω and q∉L.

Given w and W, we propose to replace (or fill) the voxel intensity
I⁎(p) with the intensity I⁎(q) if S(q) is the most similar patch to T(p),
under the constraint that q is within the search region Ω, outside the

lesion region L and that q≠p. Formally, a temporary estimate ÎðpÞ for
all p ∈L can be generated by finding ÎðpÞ ¼ Iðq̂Þ with:

q̂ ¼ argmin
∀q∈Ωj q≠pð Þ∧ q∉Lð Þ

D T pð Þ; S qð Þð Þ ð1Þ

where the distance D between two patches T and S is equal to

D T pð Þ; S qð Þð Þ ¼
X

∀i∈ ntw3f g fT pþið Þ;S qþið Þg∉Lj I pþ ið Þ−I qþ ið Þð Þ2

κc ð2Þ

Here, κ is the cardinality of the set i∈{ntw3}|{T(p+ i),S(q+ i)}∉L, i.e.
the number of voxels within the patches T(p) and S(q) that are not in
the lesion region. Note that when cN1, the denominator κc favours
patches with more information. A further hard constraint can be added
by defining α as the minimum required percentage of non-lesion voxels
in a patch. This hard constraint can be formally defined as κNαntw3, i.e.
the cardinality of the set ∀ i∈{ntw3}|{T(p+ i),S(q+ i)}∉ L has to be
more than α% of the patch size. If this constraint is satisfied, then p is
marked as solve and is removed from the set L, otherwise, p remains in
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