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Estimating the locations and spatial extents of brain sources poses a long-standing challenge for electroenceph-
alography and magnetoencephalography (E/MEG) source imaging. In the present work, a novel source imaging
method, Bayesian Electromagnetic Spatio-Temporal Imaging of Extended Sources (BESTIES), which is built upon
a Bayesian framework that determines the spatio-temporal smoothness of source activities in a fully data-driven
fashion, is proposed to address this challenge. In particular, a Markov Random Field (MRF), which can precisely
capture local cortical interactions, is employed to characterize the spatial smoothness of source activities, the
temporal dynamics of which are modeled by a set of temporal basis functions (TBFs). Crucially, all of the
unknowns in the MRF and TBF models are learned from the data. To accomplish model inference efficiently on
high-resolution source spaces, a scalable algorithm is developed to approximate the posterior distribution of
the source activities, which is based on the variational Bayesian inference and convex analysis. The performance
of BESTIES is assessed using both simulated and actual human E/MEG data. Comparedwith L2-norm constrained
methods, BESTIES is superior in reconstructing extended sources with less spatial diffusion and less localization
error. By virtue of the MRF, BESTIES also overcomes the drawback of over-focal estimates in sparse constrained
methods.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Reconstructing brain activities from non-invasive electroencephalog-
raphy (EEG) or magnetoencephalography (MEG) measurements, also
known as E/MEG source imaging, is a long-standing inverse problem
that is intrinsically and highly ill-posed: the solution will be non-unique
without effective anatomical or functional constraints restricting the
solution space (He et al., 2011; Baillet et al., 2001; Wu et al., 2016). At
present, there are two general methodological categories for solving the
E/MEG inverse problem. The first is the dipole fitting method (He et al.,
1987; Mosher et al., 1992), which attempts to estimate brain activities
using a small number of equivalent current dipoles (ECDs). Although
this method yields good estimates when the number of active regions
and their areas are small, for more complicated source configurations it

is less successful. Empirical and theoretical evidence indicates that a
major portion of E/MEG signals arises from cortical gray matter, with
considerable spatial extents (Hämäläinen et al., 1993; Tao et al., 2005).
In the context of epilepsy, estimating the extents of active regions is
greatly important for surgical planning. Dipole fitting may locate the
center of mass of a cortical patchwell, but it is incapable of determining
the extent of the patch (He et al., 2011; Ding and He, 2008). Indeed,
even optimal ECD estimates may be meaningless in the case of a highly
extended cortical area.

The other class of inverse solvers is the distributed source imaging
method, which estimates the amplitudes of a predefined dense set of
dipoles that may encompass an entire cortical surface (or may include
subcortical regions). Distributed source estimates are typically obtained
by solving a linear inverse problem. However, because the dimension of
the source space largely outnumbers the dimension of the sensor space
(about hundreds of times as the number of sensors), prior constraints
are essential to yield a unique solution. The most common constraint
is to assume that the underlying sources possess a small overall energy
(i.e., L2-norm), which is the central idea of the minimum norm estimate
(MNE) (Hämäläinen and Ilmoniemi, 1994) and its variants (e.g.,weighted
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MNE(wMNE) (Dale andSereno, 1993), standardized low resolutionbrain
electromagnetic tomography (sLORETA) (Pascual-Marqui, 2002), and
LORETA (Pascual-Marqui et al., 1994). Despite the low computational
requirements of L2-norm based methods, these methods suffer dramati-
cally from their poor spatial specificities: their estimates tend to spread
over multiple cortical sulci and gyri even though the spatial extents of
the underlying sources may be small. Moreover, these methods typically
underestimate deep sources in favor of more superficial ones. These
issues arise because without model selection, L2-norm based methods
always assume a full model that includes the activities of all estimated
sources. One type of solution is to use sparse constrained methods,
including the L0-norm constraint (Xu et al., 2010), minimum Lp-norm
(p≤1) methods (Ding and He, 2008; Xu et al., 2007), and sparsity-
inducing norm afforded by empirical Bayes (also known as sparse
Bayesian learning (SBL) (Wipf and Nagarajan, 2009). Nevertheless, as
previously reported (He et al., 2011), sparse constrained methods may
lead to over-focal estimates, which contain activations at considerably
fewer cortical regions than actual sources. Moreover, the reconstructed
source activities are often highly discontinuous over time due to noise
sensitivity. Thus, both the L2-normbasedmethods and sparse constrained
methods are limited in accurately estimating the spatio-temporal
patterns of extended sources.

Notably, the aforementioned source imaging methods make the
assumption of temporal independence (i.e., the source estimation is
applied separately to each time point), which ignores the temporal
correlation structures that are clearly present in E/MEG measure-
ments. Naturally, the information afforded by such structures could be
employed to further regularize the solution space and could thus lead to
performance improvement. To date, three strategies have been proposed
to utilize temporal information to improve source imaging solutions. The
first strategy is to directly incorporate a temporal constraint as a regular-
ization term in optimization problem formulation. For instance, the differ-
ence between neighboring time points is penalized in Baillet and Garnero
(1997), while the work by Daunizeau et al. (2006) models the temporal
smoothness of current sources based on their second derivatives. The
second strategy uses state-space models to account for temporal infor-
mation. For instance, a state-space model is proposed to describe the
spatiotemporal correlation of the sources (Galka et al., 2004; Lamus
et al., 2012; Yamashita et al., 2004; Liu et al., 2015), and model estima-
tion is performed by using either Kalman filtering (Galka et al., 2004;
Lamus et al., 2012) or a recursive penalized least squares procedure
(Yamashita et al., 2004; Liu et al., 2015). However, these algorithms
are too computationally demanding to be feasible for estimation in a
high-resolution source space. Moreover, the underlying autoregressive
(AR) model can characterize a stochastic process well but may be less
powerful inmodeling some specificwaveforms, such as the event related
potentials (ERPs). The third strategy utilizes temporal basis functions
(TBFs) to make use of temporal information. The TBFs are either
predefined or estimated in a data-driven manner using E/MEG
spatiotemporal decomposition methods. In Gramfort et al. (2013),
current sources are represented as a linear combination of Gabor
atoms, yielding spatially sparse and temporally smooth estimates
via an efficient solver based on proximal iterations by incorporating
the time-frequency mixed-norms constraint. The work of Bolstad et al.
(2009) seeks estimates comprising a small number of space-time
events out of a large number of candidates using the expectation-
maximization (EM) algorithm. In Huang et al. (2006), sample-wise
L1-norm estimates are projected into a signal subspace defined by a set
of TBFs, achieving improvement over conventional L1-norm estimates.
Similarly, the algorithm in Ou et al. (2009) projects both E/MEG data
and current sources onto a set of TBFs and imposes L1-norm regulariza-
tion in the space domain and L2-norm regularization in the temporal
domain. There are also methods that model the source activity as the
sum of a linear combination of several TBFs (Trujillo-Barreto et al.,
2008) or spatiotemporal basis functions (Stahlhut et al., 2013), and a
temporal error term. However, spacewise, these approaches yield either

over-focal (Gramfort et al., 2013; Bolstad et al., 2009; Huang et al., 2006;
Ou et al., 2009) or diffused estimates (Trujillo-Barreto et al., 2008) in
reconstruction of extended sources.

Motivated by previous studies (Daunizeau et al., 2006; Gramfort
et al., 2013; Trujillo-Barreto et al., 2008; Stahlhut et al., 2013), this
paper presents a novel algorithm based on a Bayesian probabilistic
model that comprehensively characterizes E/MEG data by exploiting
its spatio-temporal structures in a data-driven fashion, with the goal
of accurately reconstructing extended sources in both space and time.
More specifically, the contributions of the paper are threefold:

1) A flexible Bayesian model is proposed to model the spatio-temporal
structure within the E/MEG data. Specifically, Markov Random Field
(MRF) is employed to embody spatially contiguous and locally
homogeneous brain activities, the temporal smoothness of which is
modeled by a set of TBFs derived from spatio-temporal decomposi-
tions of E/MEG data.

2) A desirable property of the proposed model is that it encourages
sparsity, not on an individual source but rather on a local patch
basis, thereby overcoming the over-focal drawback of conventional
sparse estimation algorithms.

3) A fully data-driven and computationally efficient algorithm is
developed for the inference of the Bayesianmodel. To enable scalabil-
ity to high-resolution source spaces, we combine variational Bayes
(VB) and empirical Bayes to solve the inverse problem. In particular,
VB is employed to compute the variational posterior distribution of
the model parameters, and a dual-form representation of free energy
is developed to estimate the hyperparameter values, leading to a
tractablemodified cost function. By optimizing thismodified objective
function, we obtain a convenient update rule and ensure that free
energy increases at each iteration.

1.1. Organization of the paper

The current paper is organized as follows. In Section 2, we introduce
the Bayesian spatio-temporal forward model, the associated source
imaging algorithm, and the practical implementation of the proposed
algorithm. In Section 3, we present the simulation protocol and perfor-
mance metrics. In Section 4, the proposed method is applied to analyze
simulated and human E/MEG data. Section 5 concludes the paperwith a
discussion of our findings.

1.2. Notation

For notation, bold and roman lowercase variables denote vectors
and scalars, respectively. Bold uppercase variables denote matrices.
The transpose of a matrix X is denoted by X⊤. We also use xj

i to denote
the (i, j)th element of matrix X, and xj to denote the jth column of matrix
X. Nðxjμ;ΣÞ is a multivariate Gaussian density over x, with a mean μ
and a covariance Σ. tr(X) denotes the trace of the matrix X.

2. Generative model

2.1. Probabilistic spatio-temporal data model

Based on the quasi-static approximation of Maxwell's equations, the
observed E/MEG signals are a linear function of brain current sources

B ¼ L S þ ε ð1Þ

where B ¼ ½b1;b2;⋯;bT � ∈RP�T is the measured E/MEG signal, P is
the number of sensors, and T is the number of time points at which
measurements are made. bt ∈RP is a snapshot of the measured signal.
S ∈RD�T represents unknown current sources at D candidate locations
distributed over the cortex. The orientations of the current densities are
restricted to be perpendicular to the cortical mesh. Thus the dimension

386 K. Liu et al. / NeuroImage 139 (2016) 385–404



Download English Version:

https://daneshyari.com/en/article/6023470

Download Persian Version:

https://daneshyari.com/article/6023470

Daneshyari.com

https://daneshyari.com/en/article/6023470
https://daneshyari.com/article/6023470
https://daneshyari.com

