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18A promising recent development in the study of brain function is the dynamic analysis of resting-state functional
19MRI scans, which can enhance understanding of normal cognition and alterations that result from brain disor-
20ders. Onewidely usedmethod of capturing the dynamics of functional connectivity is slidingwindow correlation
21(SWC). However, in the absence of a “gold standard” for comparison, evaluating the performance of the SWC in
22typical resting-state data is challenging. This study uses simulated networks (SNs) with known transitions to ex-
23amine the effects of parameters such as window length, window offset, window type, noise, filtering, and sam-
24pling rate on the SWC performance. The SWC time course was calculated for all node pairs of each SN and
25then clustered using the k-means algorithm to determine how resulting brain statesmatch known configurations
26and transitions in the SNs. The outcomes show that the detection of state transitions and durations in the SWC is
27most strongly influenced by thewindow length and offset, followed by noise and filtering parameters. The effect
28of the image sampling rate was relatively insignificant. Tapered windows provide less sensitivity to state transi-
29tions than rectangular windows, which could be the result of the sharp transitions in the SNs. Overall, the SWC
30gave poor estimates of correlation for each brain state. Clustering based on the SWC time course did not reliably
31reflect the underlying state transitions unless the window length was comparable to the state duration,
32highlighting the need for new adaptive window analysis techniques.
33© 2016 Published by Elsevier Inc.
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45 Introduction

46 Resting-state functionalMRI (rsfMRI) has hadmuch success as a tool
47 for the study of normal and disordered brain function (Rombouts et al.,
48 2005; Sorg et al., 2007; Zang et al., 2007; Xia et al., 2013). Initially,
49 rsfMRI analysis assumed networks in the resting-brain were stationary
50 over the whole scan length (typically ranging from six to ten minutes),
51 but more recently methods that examine the network connectivity as a
52 function of time have been applied. Several studies have reported that
53 the connectivity of these networks changes over the course of the
54 scan (within a few seconds) and reveal a number of functional connec-
55 tivity (FC) states in the brain, which can be sensitive to changes related
56 to neurological disorders (Sakoğlu et al., 2010; Leonardi et al., 2013a,
57 2013bQ4 ; Damaraju et al., 2014; Li et al., 2014; Ou et al., 2015). These

58dynamics are also linked to changes in human behavior (Kucyi et al.,
592013; Thompson et al., 2013a, 2013b Q5; Jia et al., 2014; Sadaghiani et al.,
602015).
61Sliding window correlation (SWC) is the simplest and most com-
62monly used method for dynamic FC analysis and most of the dynamic
63FC studies use it at some point Q6(Schulz and Huston, 2002 Q7; Chang and
64Glover, 2010; Kiviniemi et al., 2011; Handwerker et al., 2012; Chang
65et al., 2013; Hutchison et al., 2013a, 2013b Q8Q9; Keilholz et al., 2013;
66Thompson et al., 2013a, 2013b Q10; Wilson et al., 2015). It should be noted
67that in this study dynamic FC refers to the dynamics of resting-state net-
68works only and not the dynamics because of any environmental input
69or task. In the SWC, a temporal window of a certain size and shape is se-
70lected, and the correlation coefficient between two signals of interest
71within that window is computed. Afterwards the window is shifted
72(slided) by some offset, and the process is repeated for the entire scan
73length. Despite the popularity of the SWC, results are strongly depen-
74dent on window length (Sakoğlu et al., 2010; Hutchison et al., 2013a,
752013b Q11Q12; Keilholz et al., 2013; Wilson et al., 2015) and the ideal values
76for this and other parameters for the dynamic FC analysis remain un-
77known. A nice but simplified examination of the relationship between
78theminimumwindow length and the frequency components of the sig-
79nals has been presented Q13(Leonardi and Van De Ville, 2015). Another
80study used windows of different sizes on resting state and sleep data
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81 and reported that short epochs can be used effectively for dynamic FC
82 analysis (Wilson et al., 2015). However, no study has convincingly iden-
83 tified the best window length for dynamic FC analysis. Furthermore,
84 since these brain networks change states at random times, using the
85 same window over the entire rsfMRI scan may not be the optimum
86 method to capture the true dynamic configurations of these networks.
87 The effect of window length, offset, and other parameters has not
88 been systematically examined in realistic data, and a recent study that
89 looked at the effect of window length on the correlation between the
90 BOLD signal and simultaneously-acquired local field potentials found
91 that the optimal window length is somewhat ambiguousQ14 (Thompson
92 et al., 2013a, 2013b).
93 After the SWC is performed pairwise for the brain areas of interest,
94 clustering is often used to find the number of ‘states’ that occur over
95 the length of the scan, and the times at which transitions occurQ15

96 (Hutchison et al., 2013a, 2013bQ16 ; Allen et al., 2014; Damaraju et al.,
97 2014; Shakil et al., 2014). Themost commonly usedmethod for cluster-
98 ing SWC results is based on the k-means algorithmQ17 (Hutchison et al.,
99 2013a, 2013b; Allen et al., 2014; Damaraju et al., 2014; Shakil et al.,
100 2014). The accuracy of the clustering depends on the clustering algo-
101 rithm and the ability of the SWC to resolve transitions of interest, em-
102 phasizing the need to evaluate the SWC parameters.
103 The biggest obstacle in identifying the best approach to the SWC and
104 clustering for dynamic FC analysis is that there is no ‘ground truth (GT)’
105 in standard rsfMRI data, since the actual network dynamics, number of
106 states, and state transitions are all unknown. This study circumvents
107 this problem by using simulated networks (SNs)with known transition
108 points created from real rsfMRI data. We evaluate the SWC algorithm
109 and the effects of window size, window shift, window type, noise, filter-
110 ing, and sampling or repetition time (TR) on the SWC results, and on the
111 correct identification of state transitions and durations obtained from
112 these results using k-means clustering. As expected, window size and
113 offset had a substantial impact on the accuracy of the results, followed
114 by the impact of noise and filtering, while TR had a very small impact.
115 Tapered windows resulted in poorer state identification than rectangu-
116 larwindows due to the abrupt sharp state transitions present in the SNs.
117 These findings motivate further work on methods that can dynamically
118 adapt the length of the window during the analysis or the formulation
119 of an algorithm which can more accurately detect the state transition
120 points.

121 Material and methods

122 Data and preprocessing

123 We used rsfMRI scans of nine healthy human subjects (four females,
124 ages: 21–57 years, downloaded from Nathan Klein Institute's Enhanced
125 Rockland dataset of 1000 Functional Conectome Project (http://www.
126 nitrc.org/projects/fcon_1000/). The scans were done on SIEMENS
127 MAGNETOM TrioTim syngo MR B17 scanner. The scanning parameters
128 were: TR = 645 ms, voxel size = 3 mm isotropic, duration = 10 min,
129 TE=30ms, slices=40,multi-band accel, factor=4, and timepoints=
130 900. Each scan contained 900 volumes and the initial 10 volumes of
131 each scan were discarded to compensate for transient scanner instabil-
132 ity. All preprocessing was done in statistical parametric mapping (SPM
133 12, http://www.fil.ion.ucl.ac.uk/spm/). Preprocessing included motion
134 correction, coregistration of the functional images with the anatomical
135 image, segmentation, normalization, and smoothing. Default parameter
136 values from SPM12were used during preprocessing but smoothingwas
137 done using a Gaussian kernel of size 8 and for normalization a voxel size
138 of 3 × 3 × 3 was chosen. The images were coregistered to the AAL atlas
139 (Tzourio-Mazoyer et al., 2002) using nearest neighbor interpolation
140 without any warping.
141 After preprocessing, five functional networks (dorsal DMN, ventral
142 DMN, anterior-salience, visuospatial, and sensorimotor) were extracted

143using the masks from the Stanford FIND (http://findlab.stanford.edu/
144home.html) lab (Shirer et al., 2012) for all subjects.

145Region-of-interest (ROI) time series

146For each subject, seven, non-overlapping, three-dimensional,
147regions-of-interest (ROIs) consisting of 3 × 3 × 3 voxels were chosen
148from each of the abovementioned five networks (dorsal DMN, ventral
149DMN, anterior-salience, visuospatial, and sensorimotor). The anatomi-
150cal location of the ROIs in the five networks (taken from Supplementary
151data of Shirer et al. (2012)) is given in Supplementary Fig. 1.Maps of the
152five functional networks (taken fromSupplementary data of Shirer et al.
153(2012)) along with the locations of the ROIs selected for the current
154study (arrows) are given in Supplementary Fig. 2. Each ROI time series
155was formed by extracting the intensities of the voxels in the ROI and
156then computing their mean at each time point. In order to observe the
157dependency of the analysis on the location of ROIs, we later performed
158the analysis on a second, entirely different sets of ROIs (shown in Sup-
159plementary Fig. 3). These ROIs were used to create simulated networks
160(SNs) as described in the next section. The averaged time series of each
161ROI was extracted and bandpass filtered (0.016–0.08 Hz, order 20 FIR)
162before the formation of the SNs. As expected, the ROIs that came from
163the same network were highly correlated, which was confirmed by
164computing the pairwise stationary correlations (Supplementary Fig. 4).

165Sliding window correlation of actual resting-state networks

166The main goal of this study was to analyze the performance of the
167SWC with variable parameters using SNs with known timing formed
168from real rsfMRI data. However, before starting this analysis we com-
169puted the pairwise SWC of the time series of the five actual networks
170(dorsal DMN, ventral DMN, anterior-salience, visuospatial, and sensori-
171motor) using the same window sizes as the ones used for the SNs
172(discussed in detail in the Simulated networks and sliding window
173correlation section Q18). The purpose was to compare the SWC of the actual
174datawith the results of previous studies (Hutchison et al., 2013a, 2013b Q19;
175Keilholz et al., 2013; Wilson et al., 2015), and to determine how the
176abrupt intensity changes (outliers) introduced in our SNs due to state
177transitions (explained in the Simulated networks and sliding window
178correlation section Q20) might influence results of the SWC.

179Simulated networks and sliding window correlation

180To form a SN, seven ROIs from one of the abovementioned rsfMRI
181networks were used. A portion of the time courses for these ROIs was
182taken and used as the time courses for the seven nodes of the SN until
183the first state transition point t1. At t1, a portion of the time courses
184from the seven ROIs of a different networkwas added to the SN to create
185a new state lasting from t1 to t2. This process was repeated until the de-
186sired length of 890 time points was obtained. For example, if we chose
187the nodes from ventral DMN from t1 to t2, then the nodes from t2 to t3
188were from another network e.g. sensorimotor network of the same sub-
189ject, and this process continued till we reached the last interval from
190tn − 1 to tn. Formation of the SNs in such a manner incorporated real
191rsfMRI data but gave us control over the time at which the SNs changed
192states (switched from one resting-state functional network to another)
193since we chose the transition times t1 to tn. It should be noted here that
194our SNswere formed fromfive resting-state networks but someof them
195had more than five transitions which means the data from the same
196resting-state network would be taken more than once in formation of
197these SNs. However, apart from one SN (QPeriodicSN explained later
198in this section) there is no repetition of data. For example, if the data
199from ventral DMN is taken for the durations tx − 1 to tx and ty − 1 to ty
200(x and y are integers) for a SN then it would be from two entirely differ-
201ent non-overlapping intervals of the ventral DMN. This step insured that
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