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18The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly
19understood. To better establish and explore possiblemodels of these properties,we adopt a data-driven approach
20in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to estab-
21lish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stim-
22ulus properties using a limited number of samples. To more quickly identify the complex visual features
23underlying human cortical object perception, we implemented a new functional magnetic resonance imaging
24protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images.
25Two variations of this protocol were developed, one relying on natural object stimuli and a second based on
26synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects.
27During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through
28these image spaces in order to maximize neural responses across pre-determined 1 cm3 rain regions. Elsewhere
29we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014 Q4). In contrast,
30here our objective is to present more detailed methods and explore the technical and biological factors influenc-
31ing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when
32exploring amore precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses
33to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and
34subject motion effects. Overall, our results indicate that real-time fMRImethodsmay provide a valuable platform
35for continuing study of localized neural selectivity, both for visual object representation and beyond.
36© 2016 Elsevier Inc. All rights reserved.
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47 IntroductionQ5

48 How do humans visually recognize objects? Broadly speaking, it is
49 held that the primate ventral occipito-temporal pathway of the
50 human brain implements a feedforward architecture in which the
51 features of representation progressively increase in complexity as infor-
52 mationmoves up thehierarchy (Felleman and Essen, 1991; Riesenhuber
53 and Poggio, 1999). In almost all such models, the top layers of the hier-
54 archy are construed as high-level object representations that correspond
55 to and allow the assignment of category-level or semantic labels.
56 Critically, there is also the presupposition that while early levels along
57 the pathway encode information about edge locations and orientations
58 (Hubel and Wiesel, 1968) and information about textures (Freeman
59 et al., 2013), one or more levels, between what we think of as early

60vision and high-level vision, encode intermediate visual features. Such
61features, while less complex than entire objects, nonetheless capture
62important— and possibly compositional— object-level visual properties
63(Ullman et al., 2002). Remarkably, for all of the interest in biological
64vision, the nature of these presumed intermediate features remains
65frustratingly elusive. To help address this knowledge gap, we introduce
66new methods that leverage human fMRI to explore the intermediate
67properties encoded in regions of human visual cortex.
68Any study investigating the visual properties employed in cortical
69object perception faces multiple challenges. First, the number of
70candidate properties present in real-world objects is large. Second,
71these properties are carried by millions to billions of potential stimulus
72images. Third, feature and image space can be parameterized by an
73uncountable number of potential models. Fourth, the time available in
74a givenhuman fMRI experiment is limited. Scanning time for an individ-
75ual subject is limited to several hours across several days. Fifth, during a
76given scan session, the slow evolution of the blood-flow dependent
77fMRI signal necessarily limits the frequency of single stimulus display
78trials to one every 8 to 10 s; more frequent displays produce an overlay
79of hemodynamic responses difficult to recover without carefully tuned

NeuroImage xxx (2016) xxx–xxx

⁎ Corresponding author at: Fordham University, Computer and Information Science
Department, Bronx, New York, USAQ3 .

E-mail addresses: dleeds@fordham.edu (D.D. Leeds), michaeltarr@cmu.edu
(M.J. Tarr).

YNIMG-12996; No. of pages: 21; 4C: 3, 5, 6, 8, 12, 13, 14, 15, 16, 17

http://dx.doi.org/10.1016/j.neuroimage.2016.02.071
1053-8119/© 2016 Elsevier Inc. All rights reserved.

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img

Please cite this article as: Leeds, D.D., Tarr, M.J., A method for real-time visual stimulus selection in the study of cortical object perception,
NeuroImage (2016), http://dx.doi.org/10.1016/j.neuroimage.2016.02.071

http://dx.doi.org/10.1016/j.neuroimage.2016.02.071
mailto:michaeltarr@cmu.edu
Journal logo
http://dx.doi.org/10.1016/j.neuroimage.2016.02.071
http://www.sciencedirect.com/science/journal/10538119
www.elsevier.com/locate/ynimg
http://dx.doi.org/10.1016/j.neuroimage.2016.02.071


U
N
C
O

R
R
E
C
T
E
D
 P

R
O

O
F

80 pre-processing or careful dissociation of temporally adjacent stimuli.
81 Moreover, even with these considerations, the neural data recovered
82 will be noiser and less amenable to use on a trial-by-trial basis. As
83 such, assuming a minimum of 8 s to display each trial, at most several
84 hundred stimuli can be displayed to a subject per an hour.
85 Here we suggest that dynamic stimulus selection, that is, choosing
86 new images to present based on a subject's neural responses to recently
87 shown images, enables a more effective investigation of visual feature
88 coding. Ourmethods build on the dynamic selection of stimuli in studies
89 of object vision in primate neurophysiology. For example Tanaka
90 (2003), explored the minimal visual stimulus sufficient to drive a
91 given cortical neuron at a level equivalent to the complete object. He
92 found that individual neurons in area TE were selective for a wide
93 variety of simple patterns and that these patterns bore some resem-
94 blance to image features embedded within the objects initially used to
95 elicit a response. Tanaka hypothesized that this pattern-specific selectiv-
96 ity has a columnar structure that maps out a high-dimensional feature
97 space for representing visual objects. In more recent neurophysiological
98 work Yamane et al. (2008) and Hung et al. (2012), used a search proce-
99 dure somewhat different from Tanaka and a highly-constrained, param-
100 eterized stimulus space to identify the contour selectivity of individual
101 neurons in primate IT. They found that most contour-selective neurons
102 in IT encoded a subset of the parameter space. Moreover, each 2D con-
103 tourwithin this spacemapped to specific 3D surface propertiesmeaning
104 that collections of these contour-selective units would be sufficient to
105 capture the 3D appearance of an object or part.
106 At the same time, there has been recent interest in real-time human
107 neuroimaging. For example Shibata et al. (2011), used neurofeedback
108 from visual areas V1 and V2 to control the size of a circular stimulus
109 displayed to subjects and Ward et al. (2011) explored real-time
110 mapping of the early visual field using Kalman filtering. Most recently
111 Sato et al. (2013), have developed a toolbox (“FRIEND”) that imple-
112 ments neural feedback applications in fMRI, applying classification and
113 connectivity analyses to study the encoding of emotion. These studies
114 support the idea of incorporating real-time analysis and feedback into
115 neuroimaging work to expanding fields, such as the study of object
116 perception.
117 Herewe explore newmethods for the real-time analysis of fMRI data
118 and the dynamic selection of stimuli. More specifically, our procedure
119 selects new images to display based on the neural responses to
120 previously-presented images asmeasured in pre-selected brain regions.
121 Our overall objective is to maximize localized neural activity and to
122 identify the associated complex featural selectivity within image spaces
123 that are organized on the basis of insights from earlier studies in object
124 perceptionQ6 (Leeds et al., 2013;Williams and Simons, 2000).We employ
125 two sets of objects and their corresponding spaces— real-world objects
126 organized based on similarities computed by the SIFT computer vision
127 method (Lowe, 2004) and synthetic “Fribble” objects (Williams
128 and Simons, 2000) organized based on morphs in the shapes of their
129 component appendages (see Fig. 5).
130 In previously published results, we reported the nature of the cor-
131 tical selectivities uncovered by this novel approach (Leeds et al.,
132 2014). Here we study the technical and biological factors influencing
133 the performance of our real-time stimulus search, as well as the be-
134 havior of our search across subjects and stimulus sets. In particular,
135 using synthetic stimuli, we found that searches exhibited some
136 convergence onto a small number of preferred visual features and
137 consistency across repeated searches for a given brain region within
138 an individual subject. In contrast, using real-world object stimuli,
139 we found only weak convergence and consistency, possibly as a result
140 of the visual diversity of the real-world stimuli included in this image
141 space. More generally, we observe that our methods are robust to
142 undesired actions from subjects (e.g., head motions) and program
143 flaws (e.g., stimulus selection delays), suggesting that our methods
144 offer an important first-step in developing effective methods for
145 real-time human neuroimaging.

146Material and methods

147Stimulus selection method

148Our study is unique in that it relies on the dynamic selection of
149stimuli in a parameterized stimulus space, choosing new images to
150display based on the BOLD responses to previous images within a
151given pre-selected brain region. More specifically, we automatically
152choose the next stimulus to be shown by considering a space of visual
153properties and probing locations in this space (corresponding to stimuli
154with particular visual properties) in order to efficiently identify those lo-
155cations that are likely— based on prior neural responses to other stimuli
156in this space — to elicit maximal activity from the brain region under
157study. As discussed in the Defining SIFT space and Defining Fribble
158space sections Q7, we employed two somewhat different representational
159spaces, one based on SIFT features derived from real-world images,
160and one based on synthetic “Fribble” objects (see Fig. 5). SIFT was
161used for the first group of ten subjects, while Fribbles were used for
162the second group of ten subjects. For both groups, each stimulus i that
163could be displayed is assigned a point in space pi based on its visual
164properties. The measured response of a given brain region to this
165stimulus ri is understood as:

ri ¼ f pið Þ þ η : ð1Þ
167167

That is, a function f of the stimulus' visual properties as encoded by
168its location in the representational space plus a noise term η, drawn
169from a zero-centered Gaussian distribution. The process of displaying
170an image, recording the ensuing cortical activity via fMRI, and isolating
171the response of the brain region of interest using the preprocessing
172programwemodel as performing an evaluation under noise of the func-
173tion describing the region's response. For simplicity's sake, we perform
174stimulus selection assuming our chosen brain region has a selectivity
175function f that reaches a maximum at a certain point in the representa-
176tional space and falls off with increasing Euclidean distance from this
177point. Our assumption is consistent with prior work in primate neuro-
178physiology, such as Tanaka (2003), Hung et al. (2012), and Yamane
179et al. (2008), in which stimuli were progressively adapted to maximize
180response of a single neural unit to converge on the single (complex)
181visual selectivity presumed to be associated with the unit. We also
182note that our assumption is consistent with recent work in human
183fMRI that finds that selectivity for object categories is organized in a
184smooth gradient across cortex whereby the amount of neural “real
185estate” apportioned to shared features across visually-similar categories
186is minimized (Huth et al., 2012). Under these assumptions, we use a
187modified version of the simplex simulated annealingMatlab code avail-
188able from Donckels (2012), implementing the algorithm from Cardoso
189et al. (1996). This method seeks to identify new points (corresponding
190to stimuli) that evoke the highest responses from the selected cortical
191region. An idealized example of what a search run might look like
192based on this algorithm is shown in Fig. 1b. The results of our study
193indicate our assumption of a single peak in cortical response is not
194always accurate. Nonetheless, the simplex simulated annealingmethod
195achieves convergence for several real-time stimulus searches.
196For each of four distinct stimulus classes—mammals, human-forms,
197cars, and containers for real-world objects and four classes distin-
198guished by core body shape and appendage orientation for Fribble
199objects (described further in the Interleaving searches section and in
200Leeds et al. (2014)) — we performed searches in each of two scan
201sessions. To probe the consistency of our search results across different
202initial simplex settings, we began the search within each session at a
203distinct point in the relevant stimulus representational space. In the
204first session, the starting position was set to the origin for a given stim-
205ulus class, as specific stimulus examplars were distributed in each space
206relatively evenly around the origin. In the second scan session, the
207starting position was manually selected to be in a location opposite
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