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Tractography is the standard tool for automatic delineation of white matter tracts from diffusion weighted im-
ages. However, the output of tractography often requires post-processing to remove false positives and ensure
a robust delineation of the studied tract, and this demands expert prior knowledge. Here we demonstrate how
such prior knowledge, or indeed any prior spatial information, can be automatically incorporated into a
shortest-path tractography approach to produce more robust results. We describe how such a prior can be auto-
matically generated (learned) from a population, and we demonstrate that our framework also retains support
for conventional interactive constraints such as waypoint regions. We apply our approach to the open access,
high quality Human Connectome Project data, as well as a dataset acquired on a typical clinical scanner. Our re-
sults show that the use of a learned prior substantially increases the overlap of tractography output with a refer-
ence atlas on both populations, and this is confirmed by visual inspection. Furthermore, we demonstrate how a
prior learned on the high quality dataset significantly increases the overlap with the reference for the more typ-
ical yet lower quality data acquired on a clinical scanner. We hope that such automatic incorporation of prior
knowledge and the obviation of expert interactive tract delineation on every subject, will improve the feasibility
of large clinical tractography studies.
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Introduction

Diffusion weighted imaging (DWI) of the human brain provides
local estimates of water diffusion summarized as voxel-wise diffusion
orientation distribution functions (dODFs) (Hagmann et al., 2006).
These can be transformed into fiber orientation distribution functions
(fODFs), representing estimates of the fiber directions within a voxel.
Subsequently, tractography attempts to delineate the underlying ana-
tomical tracts connecting brain regions by inferring inter-voxel connec-
tivity from these fODFs.

Over the last decade it has become increasingly clear how critical the
integrity of thesewhitematter (WM) tracts is to the healthy functioning
of the brain (Iwata et al., 2011; Abhinav et al., 2014; Connally et al.,
2014; Steinbach et al., 2015). Therefore, techniques are needed which
allow evaluation and monitoring of microstructural tissue properties
to gain insight into the mechanisms underlying brain development,
aging and pathology. Metrics of such properties include those derived
from DWI data, such as the simple fractional anisotropy (FA) (Xia
et al., 2012; McGrath et al., 2013; Whitford et al., 2015), generalized
FA (Tang et al., 2010), diffusivity measurements (Davis et al., 2009;

Benedetti et al., 2011; Galantucci et al., 2011; Wozniak et al., 2013) or
other more complex estimates of microstructure (Assaf et al., 2013;
Golestani et al., 2014). Additionally, such tract-based integritymeasures
can also be derived from other magnetic resonance sequences such as
T1 relaxometry or magnetization transfer imaging (Alexander et al.,
2011).

When comparing tract-specific features across subjects, it is impor-
tant that the tracts from which they originate are robustly and reliably
reconstructed. Voxel-wise FA values (Iwata et al., 2011; Whitford
et al., 2015) or white matter tissue probabilities (Iturria-Medina et al.,
2007) are often used to either prune results or guide the tractography.
The post-processing of tractography outputs using waypoint or exclu-
sion regions (Connally et al., 2014; Benedetti et al., 2011; Galantucci
et al., 2011; Rojkova et al., 2015) is also often necessary to ensure con-
sistent and accurate tract delineation. It would therefore be beneficial,
in terms of manual effort and reliability, if domain knowledge about
the connection or subject could be automatically included in the tract
delineation. This can be achieved by integrating prior information
regarding tract location into the tractography framework.

Jbabdi et al. (2007) present a Bayesian framework for global proba-
bilistic tractography, which aims to find the optimal tract between
two regions, incorporating prior information. However, the possible
priors only include knowledge about the existence or absence of a con-
nection and do not include any prior information about the tract
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location. Furthermore, due to the large complexity of the problem, the
optimal solution is intractable and the tracts are estimated by heuristi-
cally sampling from the posterior distribution. Building upon this global
tractography framework, Yendiki et al. (2011) include prior anatomical
information about the spatial location of a fixed number of segments
along each fiber for whole-brain tractography. The prior is computed
from training data comprised of manually labeled and verified tracts.
Although this reduces the search space and is able to guide the
tractography reliably on unseen data without manual intervention, it
still requires that domain experts post-process the tractography train-
ing data and it may need to be repeated for any future novel tasks or de-
rived features.

We present an extension to a shortest-path tractography framework
that can include any type of prior information about the spatial location
of a tract. Such prior information could, for example, consist of per-voxel
white matter probabilities, which guide tractography through white
matter, or anatomical knowledge in the form of a tract atlas. Our
algorithm also allows priors that are generated from expert annotation,
similar to Yendiki et al. (2011). In addition, we present a method for
automatically learning such spatial priors from previous tractography
results. We demonstrate, in particular, how a prior learned on indepen-
dent, high quality data, where tract delineation is easier andmore accu-
rate, is able to improve the performance of tractography on lower
quality data.

Our framework employs a shortest-path tractography (SPT) ap-
proach, which finds the globally optimal path connecting two voxels.
Like the framework described by Jbabdi et al. (2007), SPT has the advan-
tage of being less susceptible to local noise in the data because it evalu-
ates all possible connections. Moreover, because the discretization into
a graph allows the use of optimal graph-based shortest-path algorithms,
graph-based SPT methods (Iturria-Medina et al., 2007; Zalesky, 2008;
Sotiropoulos et al., 2010; Vorburger et al., 2013) are guaranteed to
find the best path connecting any pair of voxels. In contrast, their con-
tinuous counterparts (Lenglet et al., 2004; O’Donnell et al., 2002;
Fuster et al., 2014; Schober et al., 2014; Hauberg et al., 2015), as well
as the probabilistic approach by Jbabdi et al. (2007), require a good
initialization to avoid local optima. While existing graph-based SPT
algorithms often impose strict assumptions upon the form that the
f/dODF may take, our framework gives full modeling flexibility by per-
mitting any form of fODF. We obtain a Bayesian SPT algorithm by
interpreting spatial priors as soft or hard constraints on tract location.
As existing graph-based tractographymethods do not provide algorith-
mic solutions to constrained tractography problems (Iturria-Medina
et al., 2007; Sotiropoulos et al., 2010), we furthermore derive intuitive,
exact and efficient algorithmic solutions to incorporate prior informa-
tion from multiple sources into our tractography framework.

In addition to determining the most probable path for the tract
connecting two voxels, our SPT algorithm also returns a confidence
score which provides a quantitative measure of how well a shortest
path is supported by both the underlying fODFs of all component voxels
and by the prior information. This “importance” evaluation of any path
provides a numerical score that permits our framework to automatically
learn a tract prior from training data without requiring expert
interaction.

In the next section we briefly review graph-based shortest-path
tractography and how it can be applied for region to region global
tractography. We then describe how we integrate prior information in
the “Shortest-path tractography with spatial priors” section. In the
“Data” section we describe the two datasets used throughout this
study, how they were pre-processed and how the tractography experi-
ments were performed. We also describe the reference used for the
evaluation of tractography results. In the “Tractography results” section,
we show the results of the tractography, first using a simple subject-
specific prior given by white matter probability, second using study-
specific or independent learned priors, and finally using both simple
and learned priors in combination with a binary waypoint prior. We

show, in particular, the results for tractography on the dataset acquired
on a typical clinical scanner with a prior learned from the high quality
dataset. We conclude with a discussion of the results and a brief
conclusion.

Revisiting graph-based shortest-path tractography

In this section we review graph-based tractography and phrase
its solution as a shortest-path problem,whichwill allow us to efficiently
integrate spatial priors into the tractography algorithm in the following.

From the DWI data of a brain we extract an undirected brain-graph
G=(V,E,wE) whose node set V contains all the DWI voxels within the
brain, excluding those classified as cerebrospinal fluid (CSF) by prior
tissue segmentation. Each node is connected by an edge e∈E to all
white matter voxels in its 3×3×3 neighborhood on the 3D image
grid. Each edge e is assigned a weightwE(e)∈[0,1] reflecting the proba-
bility of afiber bundle connecting its two endpoint nodes; this process is
described in the next section.

A path πv ,v' connecting nodes (or voxels) v∈V and v ' ∈V in G is de-
fined as a sequence of nodes πv ,v'=[v1,v2,… ,vn], where v1=v, vn=v'
and (vi,vi+1)∈E for all i=1,… ,n−1. The cardinality |πv ,v'|=n of a
path is given by the number of nodes in the path. The likelihood of the
path πv ,v' is defined as the product of all edge weights wE(e) encoun-
tered along the path:

L πv;v0
� � ¼ ∏

n−1

i¼1
wE vi; viþ1ð Þ: ð1Þ

From fODF to edge probability

For each voxel, assume that the diffusion information from the
DWI is summarized in an fODF f :S2→R+ associating to any given
direction θ on the unit sphere S2 a probability that there exists a
fiber along that direction. We are interested in the 26 directions θi
with i=1, … , 26, pointing from the center of a voxel toward its 26
neighboring voxels.

We model the connectivity w(θi) along an edge from the voxel cen-
ter in the direction θi∈S2 by integrating the fODF over the set Ci of all di-
rections θ∈S2 pointing out of the voxel that are closer to θi than to any
other of the 26 directions θj, j≠ i. The set Ci is called a Voronoi cell
(Voronoi, 1908). Since computing integrals over Voronoi cells on the
sphere is computationally hard, we numerically approximate the inte-
gral through sampling. The weight w(θi) describes the probability of
connection in the direction θi and is defined and approximated as
follows:

w θið Þ ¼
Z
Ci

f θð Þ dθ ≈
X
~θk∈Si

f ~θk
� �

�
Vol S2

� �
N

0
@

1
A; ð2Þ

where the set S ¼ f~θk∈S2; k ¼ 1 : Ng is a uniform sample ofN directions,
Si ¼ S∩Ci is the set of direction samples belonging to Ci and Vol(S2)/N is
the average volume corresponding to a sample direction ~θk . As w(θi)
depends on its source node, the edge weight wE(v,v') is defined as the
average:

wE v; v0ð Þ ¼ 1=2 � w v→v0ð Þ þw v0→vð Þð Þ; ð3Þ

where v→v' is the direction from v to v'. This yields an undirected graph
with symmetric edge weights: wE(v,v')=wE(v',v).
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