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16Despite the constant improvement of algorithms for automated brain tissue classification, the accurate
17delineation of subcortical structures using magnetic resonance images (MRI) data remains challenging. The
18main difficulties arise from the low gray-white matter contrast of iron rich areas in T1-weighted (T1w) MRI
19data and from the lack of adequate priors for basal ganglia and thalamus. The most recent attempts to obtain
20such priors were based on cohorts with limited size that included subjects in a narrow age range, failing to
21account for age-related gray-white matter contrast changes. Aiming to improve the anatomical plausibility of
22automated brain tissue classification from T1w data, we have created new tissue probabilitymaps for subcortical
23gray matter regions. Supported by atlas-derived spatial information, raters manually labeled subcortical
24structures in a cohort of healthy subjects using magnetization transfer saturation and R2* MRI maps, which
25feature optimal gray-white matter contrast in these areas. After assessment of inter-rater variability, the new
26tissue priors were tested on T1w data within the framework of voxel-based morphometry. The automated
27detection of gray matter in subcortical areas with our new probability maps was more anatomically plausible
28compared to the one derivedwith currently available priors.We provide evidence that the improved delineation
29compensates age-related bias in the segmentation of iron rich subcortical regions. The new tissue priors, allowing
30robust detection of basal ganglia and thalamus, have the potential to enhance the sensitivity of voxel-based
31morphometry in both healthy and diseased brains.
32© 2016 Published by Elsevier Inc.
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45 Introduction

46 Computer-based assessment of brain anatomy with magnetic reso-
47 nance imaging (MRI) has become a powerful method to investigate
48 in vivo the healthy and diseased brain. Aiming to provide reliable
49 estimates of local gray matter (GM) volume across the whole brain, a
50 substantial amount of work has been devoted to the improvement of
51 the accuracy of algorithms for automated tissue classification and
52 spatial registration (Ashburner and Friston, 2000, 2005; Klein et al.,
53 2010). Despite majormethodological advances, the robust and accurate
54 delineation of the deep brain nuclei – thalamus, caudate, putamen,
55 pallidum, subthalamic nucleus, substantia nigra, and red nucleus –
56 remains challenging (Lim et al., 2013; Streitbürger et al., 2014;

57Callaert et al., 2014). The basal ganglia play a crucial role in goal-
58directed behavior andmovement control, which explains their involve-
59ment in many neurological and neuropsychiatric disorders such as
60Parkinson's and Huntington's disease, dystonia, tremor, Tourette's
61syndrome, and schizophrenia (Utter and Basso, 2008). The reliable ana-
62tomical assessment of these regions is important not only to accurately
63monitor disease-related changes but also to facilitate accurate target
64identification for functional neurosurgery in basal ganglia disorders.
65There is therefore a clear need to improve the automated detection of
66basal ganglia structures (Ahsan et al., 2007).
67Automated tissue classification relies on the distributions of image
68intensities and gray-white matter contrast in MRI images (Ashburner
69et al., 2003), which are determined by the local values of the MRI
70parameters and the microstructural composition of brain tissue
71(Fukunaga et al., 2010; Streitbürger et al., 2014; Lutti et al., 2014). In
72particular, the inaccurate classification of subcortical structures from
73T1-weighted (T1w) images—the most widely used data in computa-
74tional anatomy, arises from the high concentration of iron in these
75regions (Hallgren and Sourander, 1958; Haacke et al., 2005; Lorio
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76 et al., 2014). Importantly, this effect is furthermodulated by age-related
77 tissue property changes (Lorio et al., 2014).
78 In addition to its dependence on image intensity and gray-white
79 matter contrast, the automated tissue classification relies on prior
80 spatial information based either on stereotaxic atlases (Fischl et al.,
81 2002; Pohl et al., 2006; Khan et al., 2008) or on probabilistic maps of
82 tissue class distributions derived from MRI data (Ashburner and
83 Friston, 2005). The currently used tissue probability maps are based
84 on T1w data (Mazziotta et al., 2001) with the major drawback of a
85 regional contrast differences driven bymicrostructural tissue properties
86 (Lorio et al., 2014). More recent attempts to improve the priors for
87 robust classification of subcortical structures have benefited from new
88 MRI protocols that highlight the impact of tissue properties on gray-
89 white matter contrast. These recent achievements are limited by the
90 relatively low number of used data samples, which hampers the
91 accurate detection of inter-individual variations in brain anatomy and
92 their modulation by age (Ahsan et al., 2007; Prodoehl et al., 2008; Lim
93 et al., 2013; Keuken et al., 2014). Common to the previous studies on
94 the topic is that there was no attempt to statistically assess the impact
95 of new anatomically plausible tissue probabilitymaps on the automated
96 tissue classification within computational anatomy frameworks.
97 The purpose of this study is to build new tissue probability maps
98 (TPMs) for the automated tissue classification of thalamus, caudate, puta-
99 men, globus pallidus, substantia nigra, subthalamic nucleus, red nucleus,
100 and cerebellar dentate. The new TPMs were derived from the manual la-
101 beling of subcortical structures onmagnetization transfer saturation (MT)
102 and R2* (=1/T2*) maps, which provide optimal contrast in these areas
103 (Helms et al., 2009). The obtained TPMs were then included as a new
104 tissue prior in the Bayesian framework for tissue classification of the
105 well-established SPM software (Ashburner and Friston, 2005). To test
106 the anatomical accuracy of the tissue classification performed with the
107 newTPMs,we carried out a cross-validation between themanual labeling
108 results and the gray matter volume maps obtained from the automated
109 tissue classification based on MT images. Finally, the new TPMs were
110 applied on an independent data set of T1w images. Our hypothesis was
111 that the new tissue probability maps would enable the accurate delinea-
112 tion of subcortical structures and would prove particularly robust against
113 the effects of age-related microstructural tissue changes on T1w data.

114 Methods

115 Data acquisition

116 We used quantitative MRI (qMRI) data for the manual labeling of
117 subcortical structures. The qMRI images were originally acquired for

118previous studies (Chowdhury et al., 2013; Lorio et al., 2014). The data
119set comprised 96 healthy adults (40 male, age range 27–74 years,
120mean 55 ± 15; 56 female, age range 21–88 years, mean 57 ± 19)
121scanned on a 3 Twhole-bodyMRI system (MagnetomTIMTrio, Siemens
122Medical Systems, Germany), using a standard 32-channel radio-
123frequency receive head coil and body coil for transmission. On visual
124inspection, study participants showed neither macroscopic brain
125abnormalities, i.e., major atrophy, nor signs of overt vascular pathology,
126i.e., micro-bleeds and white matter lesions. Elderly subjects with white
127matter lesions of Grade 2 or more by the Scheltens' rating scale
128(Scheltens et al., 1993; Wardlaw et al., 2013) were excluded from the
129study.Weobtained quantitativemeasures of brain atrophy by calculating
130the brain volume fraction (Rudick et al., 1999) from MT images.
131The quantitative MRI acquisitions consisted of three multi-echo 3D
132fast low angle shot (FLASH) acquired with predominant proton density,
133PD-, T1-, and MT-weighting (PD-weighted: TR/α = 23.7 ms/6°; T1-
134weighted: TR/α = 18.7 ms/20°; MT-weighted: TR/α = 23.7 ms/6°)
135with 1 mm3 isotropic resolution (Helms et al., 2008a; Weiskopf et al.,
1362013). The MT-weighting was achieved by applying an off-resonance
137Gaussian-shaped pulse (4 ms duration, 220 nominal flip angle, 2 kHz
138frequency offset fromwater resonance) prior to the excitation. Multiple
139gradient echoeswere acquired for each FLASH acquisitionwith alternat-
140ing readout polarity: 6 equidistant echo time (TE) were used for the T1-
141and MT-weighted sets (TE between 2.34 ms and 14.7 ms) and 8
142equidistant TE were used for PD-weighted sets (TE between 2.34 ms
143and 19.7 ms). The image resolution was 1 mm isotropic. To shorten
144the acquisition time, parallel imaging (acceleration factor 2, GRAPPA),
145and partial Fourier acquisition were used. To correct the quantitative
146maps for the effect of RF transmit inhomogeneities, we measured the
147transmit field B1+ using 3D echo-planar imaging (EPI) spin-echo (SE)
148and stimulated echo (STE) images. The EPI images were acquired with
149the 4 mm isotropic resolution, parallel imaging using GRAPPA factor
1502 × 2 in PE and partition direction, TESE/TESTE/TM (mixing time)/
151TR = 37.06/37.06/31.2/500 ms. A B0 map was acquired to correct the
152RF transmit field maps for geometric distortion and off-resonance
153effects. The acquisition protocol used a 2Ddouble-echo FLASH sequence
154with the following parameters (Lutti Q4et al., 2012, 2010): slice
155thickness = 2 mm, TR = 1020 ms, TE1/TE2 = 10/12.46 ms, α = 90°,
156BW= 260 Hz/pixel and flow compensation. The total acquisition time
157was 24 min (for details on MRI acquisition parameters see Table 1,
158Supplementary material).
159QuantitativeMRImapswere calculated from the acquired data using
160an in-house code running under SPM12 (Wellcome Trust Centre
161for Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm) and
162Matlab 7.11 (Mathworks, Sherborn, MA, USA). The R2* maps were

t1:1 Table 1
t1:2 Manual labeling results. Subcortical structures' mean volume, global percentage of voxels not included by all raters (disagreement voxels), and inter-rater agreement indices (Dice index,
t1:3 Cohen's kappa, and intraclass coefficient (ICC)). RN= red nucleus; STN = subthalamic nucleus; SN= substantia nigra; GP = globus pallidus.

t1:4 Structure Volume (mm3) % of disagreement
voxels

Dice index Cohen's kappa ICC

t1:5 Mean SD Mean SD Mean SD Mean SD Mean SD

t1:6 Caudate Left 3421 900 17 3 0.83 0.06 0.85 0.06 0.83 0.06
t1:7 Right 3306 700 16 3 0.85 0.06 0.86 0.06 0.85 0.06

t1:8 Putamen
Left 3906 650 19 3 0.80 0.05 0.8 0.05 0.83 0.05

t1:9 Right 3966 690 18 4 0.85 0.03 0.86 0.03 0.84 0.04

t1:10 GP
Left 1319 235 20 4 0.79 0.08 0.8 0.08 0.78 0.08

t1:11 Right 1263 201 21 5 0.76 0.09 0.77 0.09 0.77 0.09

t1:12 Thalamus
Left 5110 1100 16 4 0.86 0.04 0.86 0.04 0.86 0.04

t1:13 Right 5495 1301 15 3 0.87 0.05 0.87 0.05 0.87 0.04

t1:14 SN
Left 330 94 25 6 0.7 0.11 0.74 0.12 0.67 0.11

t1:15 Right 330 90 23 5 0.76 0.14 0.77 0.14 0.68 0.12

t1:16 RN
Left 220 49 29 7 0.68 0.13 0.71 0.13 0.64 0.1

t1:17 Right 220 50 28 8 0.69 0.11 0.77 0.11 0.67 0.11

t1:18 STN
Left 86 28 33 7 0.65 0.14 0.70 0.12 0.67 0.1

t1:19 Right 85 20 31 7 0.7 0.1 0.73 0.19 0.69 0.1

t1:20 Dentate
Left 1032 215 20 5 0.76 0.11 0.73 0.11 0.7 0.11

t1:21 Right 1013 195 23 6 0.77 0.14 0.76 0.13 0.69 0.12

2 S. Lorio et al. / NeuroImage xxx (2016) xxx–xxx

Please cite this article as: Lorio, S., et al., New tissue priors for improved automated classification of subcortical brain structures on MRI,
NeuroImage (2016), http://dx.doi.org/10.1016/j.neuroimage.2016.01.062

http://www.fil.ion.ucl.ac.uk/spm
http://dx.doi.org/10.1016/j.neuroimage.2016.01.062


Download	English	Version:

https://daneshyari.com/en/article/6023664

Download	Persian	Version:

https://daneshyari.com/article/6023664

Daneshyari.com

https://daneshyari.com/en/article/6023664
https://daneshyari.com/article/6023664
https://daneshyari.com/

